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Abstract

The EM algorithm is being used in several research projects in ESSRL,
An overview of this algorithm, references for more careful study of it, and
some simple examples using it are given.
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I. Introduction

The ''EM’'’ in '’EM algorithm’’ stands for '’'expectation—maximization.’’ As
you might guess from its name, the algorithm proceeds by evaluating an
expectation and then performing a2 maximization. The EM algorithm is but
one numerical approach for determining maximum—likelihood estimates of
parameters from measured data. It does so recursively, evaluating an
expectation then a maximization then an expectation then a maximization
then an expectation ... and so on over and over. It is an algorithm with
some advantages and some disadvantages compared to alternative algorithms
for finding maximum—-likelihood estimates numerically.

The EM algorithm is being used in several research projects in ESSRL
and its collaborating laboratory, BCL. Some of these projects are as
follows,

a. Single—Photon Emission Computed Tomography. The EM algorithm

is being used to produce estimates of the spatial distribu—
tion of a radioactive tracer that emits a single photon with
each radioactive decay event,

b. Positron-Emission Tomography. The EM algorithm is being used
to produce estimates of the spatial distribution of a radio-
active tracer that results in two photons with each radio-
active decay event, It is also used to estimate parameters
related to the time dependent behavior of transport and decay
of the radiotracer. ’

¢. auditory electrophysiology. The EM algorithm is béing used
to estimate parameters of the discharge rate of the auditory

nerve in response to acoustic stimuli.

d. probability density estimation. The EM algorithm is being

used to estimate the probability density of a random variable
from noisy measurements of the variable.

e. power—density spectrum estimation. The EM algorithm is being
used to estimate the power density of statiomary and periodic

random processes.

f. direction finding. The EM algorithm is being used to esti-
mate the spatial location of signal sources from data collec-
ted with spatially distributed array of sensors.

g. radar—imaging., The EM algorithm is being used to estimate
radar images from delay—doppler radar data.

h. magnetic—resonance imaging. The EM algorithm is being used
to estimate signals in magnetic resonance imaging.

i. electron—microscopic autoradiography. The EM algorithm is

being used to estimate parameters in images obtained in
electron—microscopic autoradiography.

The purpose of these notes is to give a brief introduction to the EM
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algorithm because it is being used in so many ESSRL projects and is not
regularly covered in courses.

II. References

Here is a short collection of references that discuss the EM algorithm.
It is biased towards publications that have been important to ESSRL pro-
jects or reporting on them., Additional references are contained in them.

1. A. P. Dempster, N. M. Laird, and D. B. Rubin, ’'’'Maximum Likelihood from
Incomplete Data via the EM Algorithm,’’ J. Royal Statistical Society,
B., Vol. 39, pp. 1-37, 1977. This is a classic reference in which the
algorithm was first defined in a unified manner. It is a ’’'must read’’
for anyone doing research where the EM algorithm is used.

2. C. F. Wu, ''On the Convergence Properties of the EM Algorithm,’'’ Ann,
Statis., Vol. 11, pp. 95-103. This is an important paper in which
conditions for the convergence of the EM algorithm are given. It
corrects an error in the convergence proof in DLR (reference 1).

3. L. A, Shepp and Y. Vardi, ''Maximum Likelihood Reconstruction for Emis-—
sion Tomography, '’ IEEE Trans. on Medical Imaging, Vol. MI-1, pp. 113-
121, October 1982. This paper contains the gives the first use of the
EM algorithm in emission tomography.

4. D. L. Snyder and D. G. Politte, '’'Image Reconstruction from List-Mode
Data in an Emission Tomography System Having Time-of-Flight
Measurements, '’ IEEE Trans. on Nuclear Science, Vol. NS-20, pp. 1843-
1849, June 1983. This is the first paper describing the use of the EM
algorithm in the positron—emission tomography project at BCL.

5. D. L. Snyder, '’‘parameter estimation in dynamic studies.’’ This develops
an approach for using the EM algorithm to estimate parameters from
measurements that can be viewed as a superposition of several separate
components,

6. D. L. Snyder and M. I. Miller, ’'’The Use of Sieves to Stabilize Images
Produced with the EM Algorithm for Emission Tomography,'’’ IEEE Trans.
on Nuclear Science, Vol. NS-32, pp. 3864-3872, October 1985. This
describes our suggested use of Gremander’s sieves with the EM algorithm
for reducing a fundamental noise artifact encountered with maximum
likelihood estimation,

7. U. Grenander, Abstract Inference, John Wiley, 1981. The ’'’bible’’ on
sieves, It'’s tough but essential if you get serious about sieves.

8. S. Geman and C.—-R. Hwang, '’Nonparametric Maximum Likelihood Estimation
by the Method of Sieves,’’ The Annals of Statistics, Vol. 10, pp. 401-
414, 1982, This is a quite readable account about sieves along with
some examples.
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9. R. A, Tapia and J. R. Thompson, Nonparametric_Probability_Density Esti-
mation, John Hopkins Univ. Press, 1978. This gives a good account of
penalty type sieves and the idea of dimensional instability.

10. M. I. Miller, K. B, Larson, J, E. Saffitz, D. L. Snyder, and L. 7J.
Thomas, Jr., ’'’'Maximum—-Likelihood Applied to Electron-Microscopic Auto—
radiography,’’ J. of Electron Microscopy Technique, April 1985. This
paper documents the use of the EM algorithm in the EMA project at BCL.

11, M. I. Miller, '’'Algorithms for removing Recovery Related Distortion from
Auditory—-Nerve Discharge Patterms,’' J, Acoust. Soc. America, Vol. 77,
pp. 1452-1464, 1985. This paper documents the use of the EM algorithm
in the auditory electrophysiology project.

12, M. I. Miller and D. L. Snyder, ’'’'The Application of Maximum—Entropy and
Maximum—Likelihood for the Solution of Incomplete and Noisy Data Prob—
lems in Estimating Point—-Process Intensities, Probability Densities,
and Spectral Densities,’’ in review for publication in the IEEE Pro-
ceedings., This manuscript gives an overview of the use of the EM
algorithm in several ESSRL projects, including power density spectrum
estimation,

13. M. I. Miller, D. L. Snyder, and T. R, Miller, ’'’'Maximum Likelihood
Reconstruction for Single—Photon Emission Computed Tomography,’’ IEEE
Trans. on Nuclear Science, Vol. NS-32, pp. 769-778, February 1985.
This describes our approach being used on the SPECT project.

14. R. H., Shumway, '’Some Applications of the EM Algorithm to Analyzing
Incomplete Time Series Data.’’ I have misplaced the source of this
paper, but it is a good one about the estimation of parameters of
finite dimensional Gaussian processes. See me if you want to browse
through the paper or make a copy.

III. Discussion

It is useful to think of two data spaces for understanding how the EM
algorithm works. The first data space is called the incomplete—data
space. This is the space where measured data takes its values. For ex-
ample, if measured data are in the form of points along a line, then the
incomplete data space is the line, and the data are in the form of the
locations of the points on the line. If the measurements are described as
a sample of a Gaussian process, then the incomplete data space is the real
line, R*, and the data is a real number. The second space of importance is
called the complete—data space. This is harder to define because it is a
hypothetical or contrived space created by the user of the EM algorithm.
There are usually several candidate ways to select a complete—data space;
all have to result in the same final answer, but some may be considerably
easier to use than others, The ’‘’'art’' in using the EM algorithm is in
selecting this hypothetical, complete—-data space to make the problem easy
in some sense. The way that has proven most successful in all ESSRL
projects is to rely on a good mathematical model for the measured data in
the incomplete—-data space, a model that describes both how the data are
generated physically and how the instrumentation used to measure it op—
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erates,

One requirement in defining the complete and incomplete data spaces is
that there must be some known function of the complete data that uniquely
gives the incomplete data, Here are two examples.

Example A, signal in additive noise. Suppose s is a random vari-
able modeling a signal sample, n is a random variable modeling a

noise sample, and r = s + n is measured. The incomplete data space
is R*, the real line. One choice of complete data is the pair (s,n).
In this case, the complete data space is R3, the plane. The function
h(s,n) = s + n maps the complete data space into the incomplete data
space. The incomplete data, r, is uniquely defined by the complete
data, (s,n), and this function, h. On the other hand, the incomplete
data, r, and the function, h, place a comstraint on the possible
values of the incomplete data —— only those (s,n) such that s+n
equals the measured incomplete data are possible. The function h
defines a many-to—one mapping between the complete and incomplete
data spaces. Knowing the complete data specifies the incomplete data
uniquely, but knowing the incomplete data omnly specifies a set of
possible complete data., This is illustrated in the Figure 1. An-
other possible choice for the complete data is the pair (r,s), and
the mapping is then defined by h(r,s) = r.

A

\\N This (n,s)-plane is the

r ’//”/_- complete—data space.

— This line is the
incomplete—data space.

Example B ooled points of two point processes. Suppose that
there are two homogeneous point processes in time; the first has
intensity a and the second intensity b. The points of the two pro-
cesses are pooled to form a single point process with intensity a +
b. The occurrence times of points of the pooled process are ob-
served. Here the incomplete data are the measured occurrence times
{tl. 1950 000D tN} of the pooled process, For the complete data, we
can imagine for one choice that each point has an auxiliary mark
indicating whether it came from process a or process b. Then the
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complete data would be the marked process {(t,,m, ), (t bmy) s eees
(ty,m.)}, where m, is the mark (either a or b) on the %LQ point. The
mapping between the complete and incomplete spaces is h[(tl,ml),

(tz,mz), (tN,mN)] = (tl, ty, oo, tN).

The next important idea is that of the likelihood function on each data
space. We imagine that there are some parameters to be estimated, and we
denote the collection of these parameters by the vector A. Let
p. ,(incomplete datal)r) and P, (complete datal|)) denote the probability
densities of the incomplete and complete data, respectively. The loglike-
lihood function is then

L;4@) = lnlp,  (incomplete datal)r)]
on the incomplete-data space and

L .(A) = ln[pcd(complete datala)]

cd(—

on the complete—data space.

The usual parameter—estimation problem is that we are given the incom—
plete data and asked to estimate the parameters. The method of maximum
likelihood developed in EE552 would proceed by taking as the estimate a A
that maximizes the incomplete—data loglikelihood, L, .(A). In simple
problems, the maximizing value of A can be written explicitly as a
function of the incomplete data, but usually the maximizing value satisfies
a difficult-(if not impossible)-to-solve transcendental equation obtained
by setting the gradient of the loglikelihood function to zero, This diffi-
culty can sometimes be circumvented indirectly through use of the EM algo-
rithm,

The EM algorithm is a recursive algorithm that proceeds as follows,
Suppose that we have arrived somehow at an estimate of the parameters;
initially this might be some wild guess based on i?iyition or some other
information. Denote this estimate at stage~k by A . To get the esti-
mate at stage—(k+l), we first perform an E-step by evaluating the following
expectation:

A
E-step: Evaluate the function Q(LIL(k)) defined according to

aala®)) - E(L_, (1) |incomplete data,i®)].

Thus, Q is the conditional expectation of the complete—data loglikelihood
given the incomplete data and qgigTing that the parameters governing the
data are the stage-k estimates ) . VWe then perform an M-step.

A
M-step: Find the parameters A that maximize Q(L|L(k)) as a
function of A.

The maxiﬁiifrs obtained in the M—step are the stage—(k+l) parameter esti-—

mates z The E and M steps are then repeated again and again.
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The art in identifying the complete data space is to make the E and M
steps easy, or at least easier than the brute force approach of maximizing
the incomplete data loglikelihood. The 2¥£?resting fact is that under not
very stringent conditions, the iterates converge to the maximum
likelihood estimates of ) in terms of the incomplete data. This provides
for an indirect way to determime the A that makes the gradient of the
incomplete data loglikelihood zero.

IV. Examples

In what follows, we give two examples of using the EM algorithm to
determine the maximum—likelihood estimates of some parameters. The exam-
ples are '’'simple’’ so that a direct comparison can be made to the maximum-—
likelihood estimate determined by maximizing the incomplete—data loglikeli-
hood. The examples look a little complicated compared to the methods
developed in EE552; the ’'’simple’’ is in the sense that an explicit expres-—
sion can be found for the maximum—likelihood estimate as a function of the
incomplete data by solving for the parameters that zero the gradient of the
incomplete—data loglikelihood. In the ESSRL projects where the EM algo-
rithm is being used, the maximum—1likelihood estimate cannot be determined
directly in this manner, so some recourse to a numerical algorithm, such as
the EM algorithm, is necessary.

Example A (continued). Let us again look at Ex, A in which r = s + n.
Assume now that s and n are uncorrelated, Gaussian random-variables with
zero means and with variances a and b; i.e., s is N (0,a) and n is N (o,b),
where ''x is Nx(o.c)" means that $ 2

/zexp[432/20]

N (0,¢c) = (ch)—l
is the p.d.f. of x. Ve suppose that the noise variance, b, is known., The
problem is:

Given: measurement r

noise variance b

the model (r = a + b, a uncorrelated with b, etc.)
Estimate: a

solution from the incomplete—data loglikelihood:

Let us determine the maximum—likelihood estimate of a by the direct
maximization of the incomplete—data loglikelihood, as developed in EE552.
Since the sum of two zero—mean, uncorrelated Gaussian random—variables is a
zero—mean Gaussian random variable whose variance is the sum of the
variances, it follows that r is N(0,a+b). Hence, the incomplete—data
loglikelihood is

L. (a) = = (1/2)1a(a+b) = r2/2(a+b).

Setting the derivative of Lidéa) with respect to a equal to zero shows that
Lid(a) has a maximum at a ='r° — b, and an examination of the graph of
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Lid(a) as a function of a shows that Li (a) is convex down. Since a must be
nonnegative, we conclude that the maximum—likelihood estimate of a is given
by

~ 2
By = max(0,r” - b).
solution from the complete—data loglikelihood via the EM algorithm:

Let us now determine the maximimum—likelihood estimate of a by the
indirect method of the EM algorithm. Let (s,n) be the complete data. Since
the p.d.f. of (s,n) is Ns(O,a)Nn(O.b). the complete—~data loglikelihood is
given by

L y(a) = - (1/2)1n(a) - s?/2a = (1/2)1a(b) - a®/2b.
The E-step yields
aala®) = - (1/2)1a(a) - Els?1r, 4% 1/24,

where terms that are not a function of a have been dropped because we will
eventually maximize Q with respect to a. The M-step yields

A
a (k1) _ E[sZIr.:(k)].

We next need to do the hard part, namely evaluate E[32|r.:(k)]. This we do
by first noting that since

sz == (s - g(k)]z + zs;(k) - [g(k)]Z'
where we define §'&) = E[slr,:(k)], we have

Bls? 12,80 = B(1s-80)121, 8@ 4 11392,

But, from equations 143 and 144 on page 59 of Van Trees Volume I (the
textbook for EE552), we have that

E{ls-8 512,80 = §®)p pa®) 4 p;

and

s® 2 3@ g® 4oe,

Putting all these expressions together, we conclude that
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IQs)itetation would proceed by i?igcti?!)some starting value at k = 0, say
=1, and then calculating a , 8 » eeee ad infinitum., In practice,

one stops at some finite value of k when terms in the iteratio? ?ease to

change significantly. Let the limit point be denoted by x = 2\ . This

limit point satisfies

x = xb/(x+b) + [xr/(x+b)]2.

A(k)

The solutions are x = 0 and x = r2 - b. Since a
stage of the iteration, we conclude that

is nonnegative at every

x = max[O.r2 - bl,

which is the maximum—likelihood estimate of a in terms of the incomplete
data.

Example B (continued). Let us look again at Ex. B in which the incomplete
data are {t., t,, ..., t,} and the complete data are {(t ,ml). (tz,mz), 0090
(ty,m )}, where m, is the mark (either a or b) on the igﬁ point. “We now
assume that the two point processes are independent Poisson processes, with
mean parameters a and b, respectively, and that the duration of the
observation is T seconds. Let N(T), N (T), and N, (T) denote the total
number of observed points and the total number of points with marks a and b,
respectively; obviously, N(T) = N (T) + N_(T). Suppose that we get to
measure the incomplete data, we know b, and we want to estimate a.

solution from the incomplete—data loglikelihood:

Since the point process obtained by pooling the points of two Poisson
processes is also a Poisson process, with a mean parameter that is the sum
of the mean parameters of the constituent processes, it follows that the
incomplete-data loglikelihood is given by

Lid(a) = - (a+b)T + ln(a+b) N(T).

Setting the derivative of L, .(a) with respect to a equal to zero shows that
L..(a) has a maximum at a =1i1/T)N(T) - b, and an examination of the graph of
L.d(a) as a function of a shows that L. .(a) is convex down. Since a must be
nonnegative, we conclude that the maximum—likelihood estimate of a is given
by
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:m. = max[0, (1/T)N(T) - bl.

solution from the complete—data loglikelihood via the EM algorithm:

Let us now determine the maximimum~likelihood estimate of a by the
indirect method of the EM algorithm. Since the complete data can be
separated into two independent Poisson processes by kmowing the marks, the
complete—data loglikelihood is given by

Lcd(a) =~ aT + 1n(a) Na(T) - dT + 1a(b) Nf(T).
The E-step yields
Qale™) = - oT + 1n(a) EIN () IN) 5]

where terms that are not a function of a have been dropped because we will
eventually maximize Q with respect to a. The M-step yields

2D _ ) EIN () INm) 51,

This expectation can be evaluated as
EIN, (D IND, 2% 1 = §® N /ia® + b1,
Hence,
2D oy 2 ®NTy/1a® 4 b

iteration would proceed by s cti some starting value at k = 0, say
EkS) = 1, and then calculating 3?1?, 3?5), eess ad infinitum. In practice,
one stops at some finite value of k when terms in the iteratio?afease to
change significantly. Let the limit point be denoted by x = 'y . This

limit point satisfies

x = (1/T) xN(T)/[x + b].

The solutions are x = 0 and x = (1/T)N(T) - b, Since :(k)

at every stage of the iteration, we conclude that

is nonnegative
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x = max[0, (1/T)N(T) - bl,

which is the maximum—likelihood estimate of a in terms of the incomplete
data.

V. Conclusion

In general, maximum likelihood estimates of parameters are impossible to
determine explicitly because they satisfy a nonlinear, transcendental
equation obtained by setting the gradient of the incomplete—data
loglikelihood to zero. The EM algorithm provides a numerical approach for
determining maximum—likelihood estimates when they cannot be found
explicitly.
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