
Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA1

Developing Code for Cell - DMA

Course Code: L3T2H1-39
Cell Ecosystem Solutions Enablement

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA2

Class Objectives – Things you will learn

How MFC commands were used to access main storage and
maintain synchronization with other processors and devices in the
system

DMA commands and DMA-command tag groups

DMA transfers and how to initiate a DMA transfer from an SPE

DMA-list transfers and how to initiate a DMA-list

Double buffering and multibuffering

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA3

Class Agenda
MFC Commands
DMA Commands
– MFC DMA Commands
– MFC Synchronization Commands
– MFC Atomic Commands
DMA-Command Tag Groups
DMA Transfers
– How to initiate a DMA transfer from an SPE
– Sample DMA Get Command (SPE)
DMA-List Transfers
– DMA List – SPU Get from Main Memory
– DMA –List Transfers - Creating the list
– Initiating the Transfers Specified in the List
DMA To/From Another SPE
DMA Command Status
DMA Transfers Example
Double Buffering
– Moving Double-Buffered Data and DMA Transfers Using a Double-Buffering Method
– How to Initiate a Buffer Transfer and Wait for a Buffer Transfer to Complete
– Example Illustrates Double Buffering
Multibuffering

Trademarks - Cell Broadband Engine ™ is a trademark of Sony Computer Entertainment, Inc.

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA4

Cell’s primary Communication Mechanisms

DMA transfers, mailbox messages, and signal-notification

all three are implemented and controlled by the SPE’s MFC

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA5

MFC Commands

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA6

MFC Commands
Main mechanism for SPUs to
– access main storage
– maintain synchronization with other processors and devices in the system

Can be issued either SPU via its MFC by PPE or other device, as follows:
– Code running on the SPU issues an MFC command by executing a series of

writes and/or reads using channel instructions
– Code running on the PPE or other devices issues an MFC command by

performing a series of stores and/or loads to memory-mapped I/O (MMIO)
registers in the MFC

MFC commands are queued in one of two independent MFC command queues:
– MFC SPU Command Queue — For channel-initiated commands by the

associated SPU
– MFC Proxy Command Queue — For MMIO-initiated commands by the PPE or

other device

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA7

DMA Commands

MFC commands that transfer data are referred to as DMA
commands

Transfer direction for DMA commands referenced from the SPE

Into an SPE (from main storage to local store) get

Out of an SPE (from local store to main storage) put

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA8

MFC Command Suffixes

Start SPU

Fenced

Barrier

List

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA9

MFC DMA Commands

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA10

MFC DMA Commands (Cont’d)

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA11

MFC Synchronization Commands
MFC synchronization commands

Used to control the order in which DMA storage accesses are performed

Four atomic commands (getllar, putllc, putlluc, and putqlluc),

Three send-signal commands (sndsig, sndsigf, and sndsigb), and

Three barrier commands (barrier, mfcsync, and mfceieio).

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA12

MFC Atomic Commands

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA13

DMA-Command Tag Groups

5-bit DMA Tag for all DMA commands (except getllar, putllc, and
putlluc)

Tag can be used to
– determine status for entire group or command
– check or wait on the completion of all queued commands in one or

more tag groups

Tagging is optional but can be useful when using barriers to control the
ordering of MFC commands within a single command queue.

Synchronization: fences and barriers
– Execution of a fenced command option is delayed until all previously

issued commands within the same tag group have been performed.
– Execution of a barrier command option and all subsequent

commands is delayed until all previously issued commands in the
same tag group have been performed.

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA14

Barriers and Fences

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA15

DMA Transfers

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA16

DMA
DMA transfers
– transfer sizes can be 1, 2, 4, 8, and n*16 bytes (n integer)

– maximum is 16KB per DMA transfer

– 128B alignment is preferable

DMA command queues per SPU
– 16-element queue for SPU-initiated requests

– 8-element queue for PPE-initiated requests

SPU-initiated DMA is always preferable

DMA tags
– each DMA command is tagged with a 5-bit identifier

– same identifier can be used for multiple commands

– tags used for polling status or waiting on completion of DMA commands

DMA lists
– a single DMA command can cause execution of a list of transfer requests (in LS)

– lists implement scatter-gather functions

– a list can contain up to 2K transfer requests

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA17

DMA Transfers
Addressing
– Main storage: effective address (EA) operand in a DMA command

– Local Store: local store address (LSA) operand in a DMA command.

LS data is accessed sequentially with a minimum step of a quadword

SPE accesses its MFC’s DMA-transfer facilities through the channels

To enqueue a DMA command, SPE software writes the MFC Command
Parameter Channel Registers with the wrch instruction
– 1. Write the LS address to the MFC_LSA channel.

– 2. Write the EA-high (EAH) to the MFC_EAH channel.

– 3. Write the EA-low (EAL) to the MFC_EAL channel.

– 4. Write the transfer size to the MFC_Size channel.

– 5. Write the tag ID to the MFC_TagID channel.

– 6. Write the class ID and command opcode to the MFC_Cmd channel.

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA18

How to initiate a DMA transfer from an SPE
extern void dma_transfer(volatile void *lsa, // local store address

unsigned int eah, // high 32-bit effective address

unsigned int eal, // low 32-bit effective address

unsigned int size, // transfer size in bytes

unsigned int tag_id, // tag identifier (0-31)

unsigned int cmd); // DMA command

An ABI-compliant assembly-language implementation of the subroutine is:

.text

.global dma_transfer

dma_transfer:

wrch $MFC_LSA, $3

wrch $MFC_EAH, $4

wrch $MFC_EAL, $5

wrch $MFC_Size, $6

wrch $MFC_TagID, $7

wrch $MFC_Cmd, $8

bi $0

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA19

How to initiate a DMA transfer from an SPE (Cont’d)

A comparable C implementation using the SPU composite intrinsic, spu_mfcdma64, is:

#include <spu_intrinsics.h>

void dma_transfer(volatile void *lsa, unsigned int eah, unsigned int eal,

unsigned int size, unsigned int tag_id, unsigned int cmd)

{

spu_mfcdma64(lsa, eah, eal, size, tag_id, cmd);

}

The performance of a DMA data transfer is best when the source and
destination addresses have the same quadword offsets within a PPE
cache line.

Quadword-offset-aligned data transfers generate full cache-line bus
requests for every unrolling, except possibly the first and last unrolling.

Transfers that start or end in the middle of a cache line transfer a partial
cache line (less than 8 quadwords) in the first or last bus request,
respectively.

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA20

DMA Commands for SPU

Channel Control
Intrinsics

spu_writech

Composite
Intrinsics

spu_dmfcdma32

MFC Commands
mfc_get

defined as macros in
spu_mfcio.h

For details see: SPU C/C++ Language Extensions

Assembler Inst
wrch

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA21

Sample DMA Get Command (SPE)

DMA get from main memory
mfc_get(lsaddr,ea,size,tag_id,tid,rid);

– lsaddr = target address in SPU local store for fetched data (SPU local address)

– ea = effective address from which data is fetched (global address)

– size = transfer size in bytes

– tag_id = tag-group identifier

– tid = transfer-class id

– rid = replacement-class id

Also available via “composite intrinsic”:
spu_mfcdma64(lsaddr, eahi, ealow, size, tag_id, cmd);

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA22

DMA-List Transfers

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA23

DMA-List Transfers

A DMA list is a sequence of transfer elements (or list elements)

initiating DMA-list command

sequence of DMA transfers between a single area of LS and
possibly discontinuous areas in main storage

DMA lists are stored in an SPE’s LS on 8 Byte boundary

The sequence of transfers is initiated by getl or putl.

DMA-list commands can only be issued by SPE

PPE or other devices can create and store the lists in an SPE’s LS

DMA lists can be used to implement scatter-gather functions
between main storage and the LS.

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA24

DMA –List Transfers - Creating the list
List sizes
– Each DMA transfer can transfer up to 16 KB
– the list can have up to 2,048 (2 K) transfer elements.
The form of a transfer element is {LTS, EAL}.
– LTS: list transfer size

• the most-significant bit of which serves as an optional stall-and-notify flag
– EAL: is the low-order 32-bits of an EA
Transfer elements are processed sequentially, in the order they are
stored.
Stall and Notify Flag
– If set for an transfer element, the MFC will stop processing the DMA list

after performing the transfer for that element until the SPE program clears
the DMA List Command Stall-And-Notify Event from the SPU Read Event
Status Channel.

– This gives programs an opportunity to modify subsequent transfer
elements before they are processed by the MFC.

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA25

Initiating the Transfers Specified in the List
List transfer is started by getl or putl from the SPE whose LS contains the list

A DMA-list command requires two different types of parameters than those required by a single-
transfer DMA command:

MFC_EAL: This parameter must be written with the starting local store address (LSA) of the
list, rather than with the EAL. (The EAL is specified in each transfer element.)

MFC_Size: This parameter must be written with the size of the list, rather then the transfer
size. (The transfer size is specified in each transfer element.) The list size is equal to the
number of transfer elements, multiplied by the size of the transfer-element structure (8 bytes).

The starting LSA and the EA-high (EAH) are specified only once, in the DMA-list command that
initiates the transfers. The LSA is internally incremented based on the amount of data transferred by
each transfer element. However, if the starting LSA for each transfer element in a list does not begin
on a 16-byte boundary, then hardware automatically increments the LSA to the next 16-byte
boundary.

The EAL for each transfer element is in the 4-GB area defined by EAH. Although each EAL starting
address is in a single 4-GB area, individual transfers may cross the 4-GB boundary.

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA26

DMA List – SPU Get from Main Memory
Provides a gather function

List of source effective addresses created in SPU local store as array of list
elements
– each array element has 8 bytes, nominally as:

struct spu_dma_list_elem {

unsigned int size;

unsigned int ea_low;

};

List-oriented DMA get:
mfc_getl(lsaddr,ea,list,size,tag_id,tid,rid);

– lsaddr = target address in SPU local store for fetched data (SPU local address)

– ea = effective (high) address that is target of first list element

– list = address of list element array in SPU local store (must be 8-byte aligned)

– size = size of list array (must be a multiple of 8 bytes)

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA27

DMA To/From Another SPE

Address in the other SPE’s local store is represented as a 32-bit effective
address (global address)

SPE issuing the DMA command needs a pointer to the other SPE’s local
store as a 32-bit effective address (global address)

PPE code can obtain effective address of an SPE’s local store:
#include <libspe.h>

speid_t speid;

void *spe_ls_addr;

spe_ls_addr = spe_get_ls(spuid);

Effective address of an SPE’s local store can then be made available to
other SPEs (e.g. via DMA or mailbox)

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA28

DMA Status

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA29

DMA Command Status (SPE)

DMA read and write commands are non-blocking

Tags, tag groups, and tag masks used for:
– checking status of DMA commands

– waiting for completion of DMA commands

Each DMA command has a 5-bit tag
– commands with same tag value form a “tag group”

Tag mask is used to identify tag groups for status checks
– tag mask is a 32-bit word

– each bit in the tag mask corresponds to a specific tag id:

tag_mask = (1 << tag_id)

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA30

DMA Status Checking (SPE)

Set tag mask
unsigned int tag_mask;

mfc_write_tag_mask(tag_mask);

– tag mask remains set until changed

Fetch tag status
unsigned int result;

result = mfc_stat_tag_status();

– tag status Is logically ANDed with current tag mask

– tag status bit of ‘1’ indicates that no DMA requests tagged with the specific tag
id (corresponding to the status bit location) are still either in progress or in the
DMA queue

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA31

Waiting for DMA Completion (SPE)

Wait for any tagged DMA:
mfc_read_tag_status_any():

– wait until any of the specified tagged DMA commands is completed

Wait for all tagged DMA:
mfc_read_tag_status_all():

– wait until all of the specified tagged DMA commands are completed

Specified tagged DMA commands = commands specified by current tag
mask setting

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA32

DMA Transfers Example

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA33

DMA List Sample

#include <spu_mfcio.h>

struct dma_list_elem {
unsigned int size;

unsigned int ea_low;
};

struct dma_list_elem list[16] __attribute__
((aligned (8)));

void get_large_region(void *dst, unsigned
int ea_low, unsigned int nbytes)

{
unsigned int i = 0;

unsigned int tagid = 0;
unsigned int listsize;

if (!nbytes)

return;

while (nbytes > 0) {
unsigned int sz;

sz = (nbytes < 16384) ? nbytes : 16384;
list[i].size = sz;

list[i].ea_low = ea_low;

nbytes -= sz;
ea_low += sz;

i++;
}

listsize = i * sizeof(struct dma_list_elem);

spu_mfcdma32((volatile *)dst, (unsigned int)
&list[0], listsize, tagid, MFC_GETL_CMD);

}

This C-language sample program creates a DMA list and, in the last line, uses an spu_mfcdma32 intrinsic
to issue a single DMA-list command (getl) to transfer a main-storage region into LS.

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA34

Double Buffering

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA35

Moving Double-Buffered Data
Consider an SPE program that requires large amounts of data from main
storage. The following is a simple scheme to achieve that data transfer:

1. Start a DMA data transfer from main storage to buffer B in the LS.

2. Wait for the transfer to complete.

3. Use the data in buffer B.

4. Repeat.

A lot of time is wasted waiting for DMA transfers to complete.

We can speed up the process significantly by

allocating two buffers, B0 and B

overlapping computation on one buffer with data transfer in the other

Double buffering is a form of multibuffering, which is the method of using
multiple buffers in a circular queue to overlap processing and data transfer.

“Double Buffering”

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA36

Double Buffering

The purpose of double buffering is to
– maximize the time spent in the compute phase of a program
– minimize the time spent waiting for DMA transfers to complete

To use double buffering effectively, follow these rules for DMA transfers
(SPE):
– Use multiple LS buffers.
– Use unique DMA tag IDs, one for each LS buffer.
– Use fenced command options to order the DMA transfers within a tag

group.
– Use barrier command options to order DMA transfers within the MFC’s

DMA controller.

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA37

DMA Transfers Using a Double-Buffering Method
The double-buffering sequence is:

1. Initiate DMA transfer of incoming data from EA to LS buffer B0.

2. Initiate DMA transfer of incoming data from EA to LS buffer B1.

3. Wait for transfer of buffer B0 to complete.

4. Compute on data in buffer B0.

5. Initiate DMA transfer of incoming data from EA to LS buffer B0.

6. Wait for transfer of buffer B1 to complete.

7. Compute on data in buffer B1.

8. Repeat steps 2 through 7 as necessary.

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA38

How to Initiate a Buffer Transfer

#include <spu_intrinsics.h>

#include <spu_mfcio.h>

volatile void *B[2]; /* Pointers to LS Buffers */

/* Initiate transfer using LS buffer B[idx] */

static inline void xfer(unsigned int ea, unsigned int size, unsigned
int idx)

{

spu_mfcdma32(B[idx], ea, size, idx, MFC_GET_CMD);

}

Index used as tag id

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA39

How to Wait for a Buffer Transfer to Complete

/* Wait for B[idx] transfer to complete. */

static inline void wait_xfer(unsigned int idx)

{

unsigned int tag_mask = (1 << idx);

spu_writech(MFC_WrTagMask, tag_mask);

spu_mfcstat(MFC_TAG_UPDATE_ALL);

}

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA40

Example Illustrates Double Buffering
/* Example C code demonstrating double buffering using buffers B[0] and B[1].

* In this example, an array of data starting at the effective address eahi|ealow is DMAed

* into the SPU's local store in 4 KB chunks and processed by the use_data subroutine.

*/

#include <spu_intrinsics.h>

#include <spu_mfcio.h>

#define BUFFER_SIZE 4096

volatile unsigned char B[2][BUFFER_SIZE] __attribute__ ((aligned(128)));

void double_buffer_example(unsigned int ea, int buffers)

{

int next_idx, idx = 0;

// Initiate first DMA transfer

spu_mfcdma32(B[idx], ea, BUFFER_SIZE, idx, MFC_GET_CMD);

ea += BUFFER_SIZE;

while (--buffers) {

next_idx = idx ^ 1; // toggle buffer index
spu_mfcdma32(B[next_idx], ea, BUFFER_SIZE, idx, MFC_GET_CMD);
ea += BUFFER_SIZE;
spu_writech(MFC_WrTagMask, 1 << idx);
(void)spu_mfcstat(MFC_TAG_UPDATE_ALL); // Wait for previous transfer done
use_data(B[idx]); // Use the previous data
idx = next_idx;

}

spu_writech(MFC_WrTagMask, 1 << idx);

(void)spu_mfcstat(MFC_TAG_UPDATE_ALL); // Wait for last transfer done

use_data(B[idx]); // Use the last data

}

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA41

Multibuffering
Multibuffered data transfers on the SPU
1. Allocate multiple LS buffers, B0..Bn.
2. Initiate transfers for buffers B0..Bn. For each buffer Bi, apply tag group

identifier i to transfers involving that buffer.
3. Beginning with B0 and moving through each of the buffers in round robin

fashion:
– Set tag group mask to include only tag i, and request conditional tag

status update.
– Compute on Bi.
– Initiate the next transfer on Bi.

This algorithm waits for and processes each Bi in round-robin order, regardless of
when the transfers complete with respect to one another. In this regard, the algorithm
uses a strongly ordered transfer model. Strongly ordered transfers are useful when
the data must be processed in a known order.

Systems and Technology Group

06/27/06Course Code: L3T2H1-56 Developing Code for Cell - DMA42

(c) Copyright International Business Machines Corporation 2005.
All Rights Reserved. Printed in the United Sates September 2005.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.
IBM IBM Logo Power Architecture

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result
in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change
IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity
under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable
for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division The IBM home page is http://www.ibm.com
1580 Route 52, Bldg. 504 The IBM Microelectronics Division home page is
Hopewell Junction, NY 12533-6351 http://www.chips.ibm.com

