
Lighting & Rasterization
Prof. Aaron Lanterman

(Based on slides by Prof. Hsien-Hsin Sean Lee)
School of Electrical and Computer Engineering

Georgia Institute of Technology

2

Illumination models
• It won’t look 3-D without lighting
• Part of geometry processing

– Can also be part of rasterization
• Illumination types

– Ambient
– Diffuse
– Specular
– Emissive

3

Local vs. global illumination
• Local illumination

– Direct illumination: Light shines on all objects
without blocking or reflection

– Used in most games

• Global illumination
–  Indirect illumination: Light bounces from one

object to other objects
– Adds more realism (non real-time rendering)
– Computationally much more expensive
– Ray tracing, radiosity

?

4

Common light sources

Directional Light
(Infinitely far away)

Point Light
(Emit in all directions)

Spot Light
(Emit within a cone)

5

Illumination: ambient lighting
• Not created by any light source
• A constant lighting from all directions
• Contributed by scattered light in a surrounding

ambientambietambient LMC ⊗=
RGB multiplies separately Material Color Light Color

⊗

6

Illumination: diffuse lighting
• Light sources are given
• Assume light bounces in all directions

Reflected light will reach the eyes
no matter where the camera is!

Diffuse surface

7

Reflected light intensity calculation
•  Reflectivity ∝ the entry angle
•  Use Lambert’s cosine Law

0

0.2

0.4

0.6

0.8

1

2
π

intensity

F(θ)=cos(θ)

2
π−

Surface
Normal

n →

Surface
Normal

n →
θ

Surface
Normal

n →
θ

Cdiff =max(L
!"
•n
"
, 0) ! (Mdiff " Ldiff)

Dot product

Reflection
Full

None

Partial

L →

8

Diffuse

Ambient + diffuse lighting

Material Color Light Color
Ambient +

Diffuse

Cdiff =Mambient ! Lambient +max(L
!"
•n
"
, 0) " (Mdiff ! Ldiff)

Ambient + Diffuse

⊗

9

Illumination: specular lighting
• Create shining surface (surface perfectly reflects)
• Viewpoint dependent

Ambient +
Diffuse +
Specular Material Color Light Color

Specular

10

Jim Blinn’s specular model

• A (usually) more computationally efficient
approximation of the Phong specular model that
uses the reflective vector R

•  “S” controls the bright region around surface

E →

L →

n →

specspec
S

spec LMHnC ⊗⋅•=))0,(max(

R→
LE
LEH

+

+
=

Half-way vector

H
→

11

Specular brightness effect
Cspec = (max(n

!
•H
!"!

, 0))S !Mspec " Lspec
 where n

!
•H
!"!
= n H cos!

L1

L2

n1

n2

H1

H2

More shining

E1

E2

12

Role of brightness parameter S

0

0.2

0.4

0.6

0.8

1
intensity

cosθ

cos2θ

cos8θ

cos64θ

2
π− 2

π

specspec
S

spec LMHnC ⊗⋅•=))0,(max(

cosθ > cosω

~0.65

~0.95

cos8θ >>> cos8ω

~0.62

 n1

n2

H1
H2

θ

ω

S=1

 n1

n2

H1
H2

θ

ω

S=8

~0.05
radian

13

Specular lighting effect
• A larger S

shows more
concentration
of the
reflection

14

Illumination: emissive lighting

• Color is emitted by the material only

Call =Ce +Ma ! La +max(L
!"
•n
"
, 0) " (Md ! Ld)+ (max(n

"
•H
!"!
, 0))n "Ms ! Ls

Ambient +
Diffuse +

Specular +
Emissive

Material
Emissive

Color

+

Ambient +
Diffuse +
Specular

15

Common light sources (revisited)

Directional Light
(Infinitely far away)

Point Light
(Emit in all directions)

Spot Light
(Emit within a cone)

16

Light source properties
• Position
• Range

– Specifying the visibility
• Attenuation

– The farther the light source, the dimmer the color

2
210 dadaaAtten ⋅+⋅+=

Call =Ce +Ma ! La +
max(L

!"
•n
"
, 0) " (Md ! Ld)+ (max(n

"
•H
!"!
, 0))n "Ms ! Ls

Atten

17

Falloff effect

Spotlight effect

•  Similar in form to specular lighting (but different!)
•  Falloff factor determines the fading effect of a spotlight
•  “f” exponentially decreases the cos(α) value

L → d →
α

!

spot = (max(cos",0)) f

spot = (max(L • d,0)) f

where f is the falloff factor

Cwhatever = spot #Cwhatever

18

Rasterization: shading a triangle

•  Converting geometry to a raster image (i.e., pixels)
•  Paint each pixel’s color (by calculating light intensity) on your display
•  Gouraud shading: intensity interpolation of vertices

RGB(255,0,0)

RGB(0,255,0) RGB(0,0,255)

19

Gouraud shading
RGB(255,0,0)

RGB(0,255,0) RGB(0,0,255)

RGB(127,0,127) RGB(127,127,0)

RGB(127,64,64)

• Scan conversion algorithm

Scan line

20

Comparison of shading methods

•  Gouraud shading supported by (even old) 3-D graphics hardware
•  Phong shading

–  Requires generating per-pixel normals to compute light intensity for each
pixel, not efficient for games

–  Can be done on modern GPUs using Cg or HLSL

Flat shading Gouraud shading Phong shading

Source: Michal Necasek

21

Double buffering
•  Display refreshes at 60 ∼ 75 Hz

•  Rendering could be “faster”
than the refresh period

•  Too fast leads to
–  Frames not shown

•  Too slow leads to
–  New and old frame mixed
–  Flickering

•  Solution:
–  Double or multiple buffering

surface1 surface2
Front Buffer Back Buffer

surface2 surface1
swap

22

The Z-buffer

•  Also called depth buffer
•  Draw the pixel which is nearest to the viewer
•  Number of the entries corresponding to the screen resolution

(e.g. 1024x768 should have a 768k-entry Z-buffer)
•  Granularity matters

–  8-bit never used
–  16-bit z value could generate artifacts

z1 z2 z3

23

Fog effects

•  Provide depth cue
–  Simulate weather condition
–  Avoid popping effect

•  Color blending

)0,),((

)1(fog

startstop

start

vertex

fogfog
fogvertexeyedistMAXf

ColorfColorfcolor

−

−
=

⋅+⋅−=

fogstop fogstart

•  Calculate distance
•  Calculate intensity of vertex color based on

distance
–  Color blending
–  Linear density, exponential density

•  Blending color schemes
–  Per-vertex (then interpolate pixels), less

expensive
–  Per-fragment basis (NVIDIA hardware),

better quality

24

Aliasing

• Jagged line (or staircase)
• Can be improved by increasing

resolution (i.e. more pixels)

25

Anti-aliasing by multisampling
(Example: Supersampling)

•  GPU samples multiple locations for a pixel
•  Several different methods

–  e.g., grid (as shown), random, GeForce’s quincunx
•  Downside

–  Blurry image
–  Increased memory (e.g., z-buffer) storage for subpixel information

Actual Screen Pixels

3x3 Virtual Pixels
(Bartlett window)

(255, 159, 159)

Example

1 1

1 1 2

2
2 2 4

(255,255,255) (255,0,0) (255,255,255)

(255,255,255)

(255,255,255)

(255,255,255)

(255,0,0) (255,255,255)

(255,0,0)

26

Anti-aliasing example

No MSAA

With MSAA

Ideal

27

Visualizing anti-aliasing example
No MSAA With MSAA

