
Texturing & Blending
Prof. Aaron Lanterman

(Based on slides by Prof. Hsien-Hsin Sean Lee)
School of Electrical and Computer Engineering

Georgia Institute of Technology

2

Textures
• Rendering tiny triangles is slow
• Players won’t even look at some certain details

– Sky, clouds, walls, terrain, wood patterns, etc.
• Simple way to add details and enhance realism
• Use 2D images to map polygons
• Images are composed of 2D “texels”
• Can be used to substitute or blend with the lit

color of a texture-mapped surface

3

Texture coordinates
• Introduce one more component

to geometry
– Position coordinates
– Normal vector
– Color
– Texture coordinates

4

Texture coordinate conventions

• Direct3D/XNA texture convention
– (u, v) coordinates for each vertex
– (0,0) = upper left corner
– (1,1) = lower right corner

• OpenGL texture convention
– (s, t) coordinates for each vertex
– (0,0) = bottom left corner
– (1,1) = upper right corner

5

Texture mapping example (1)
(0,0)

(1,1)

v0 v1

v2 v3

v7 v8

(0,1)

(1,0)

{v1.x, v1.y, v1.z, …, 1, 0},
{v2.x, v2.y, v2.z, …, 1, 1},
{v0.x, v0.y, v0.z, …, 0, 0},
{v3.x, v3.y, v3.z, …, 0, 1},

u v
Direct3D/XNA convention

6

Texture mapping example (2)
Texture 2

(0,0)

(1,1)

v0 v1

v2 v3

v7 v8 Texture 1
(0,0)

(1,1) (0,1)

(1,0)

“Perspective correct” texture mapping

7

From http://en.wikipedia.org/wiki/Texture_mapping

8

Repeated textures
(0,0)

(1,1)

{v1.x, v1.y, v1.z, …, 0, 0},
{v2.x, v2.y, v2.z, …, 5, 0},
{v0.x, v0.y, v0.z, …, 5, 3},
{v3.x, v3.y, v3.z, …, 0, 3},

u v

(1,0)

(0,1)

v1 v2

v0 v3

9

Repeated brick texture

{v1.x, v1.y, v1.z, …, 0, 0},
{v2.x, v2.y, v2.z, …, 6, 0},
{v0.x, v0.y, v0.z, …, 6, 6},
{v3.x, v3.y, v3.z, …, 0, 6},

u v

10

Magnification

•  Texel and pixel mapping is rarely 1-to-1
•  Mapped triangle is very close to the camera
•  One texel maps to multiple pixels

Pixels on screen Texels

11

Nearest point sampling (for magnification)

• Choose the texel nearest the pixel’s center

Pixels on screen Texels

12

Averaging (for magnification)

• Average the 2x2 texels surrounding a given pixel

Texels

R=102
G=102
B=51

R=255
G=204
B=102

R=253
G=230
B=145

R=247
G=237
B=141

Pixels on screen

R=214
G=193
B=110

13

Bilinear filtering (for magnification)

• Or take the weighted color values for the 2x2 texels
surrounding a given pixel

1-x x

y

1-y

: pixel enclosed by 4 texels

* (1-x) * (1-y)

* (1-x) * y

* x * (1-y)

* x * y +

Final Color

+

+

14

Minification

•  Texel and pixel mapping is rarely 1-to-1
• Multiple texels map to one pixel

Pixels on screen Texels

Color?

15

Nearest point sampling (for minification)

• Choose the texel nearest the pixel’s center
Pixels on screen

16

Averaging (for minification)

• Average for the 2x2 texels corresponding to a given pixel

Pixels on screen

R=135
G=119
B=23

R=252
G=219
B=96

R=0
G=0
B=0

R=234
G=189
B=0

R=155
G=132
B=30

17

Mip-mapping (1)
• Multiple versions are provided for the same

texture
• Different versions have different levels of

details
– E.g., 7 LOD maps: 256x256, 128x128, 64x64,

32x32, 16x16, 8x8, 4x4
– Choose the closest maps to render a surface

• Maps can be automatically generated by 3D
API

18

Mip-mapping (2)

• API or hardware can
–  Choose the right one for the viewer

• Good performance for far triangles
• Good LOD for close-by objects

–  Trilinearly interpolate

19

Tri-linear filtering using mipmaps

• Interpolate between mipmaps

Lower Res. Mip Map
Screen
Pixel

R=155
G=132
B=30

R=229
G=208
B=119

R=233
G=227
B=143

R=178
G=179
B=90

R=199
G=187
B=96

Higher Res. Mip Map

R=147
G=114
B=117

R=58
G=0
B=0

R=66
G=0
B=0

R=106
G=80
B=74

R=94
G=49
B=48

R=147
G=118
B=72

20

Anisotropic filtering
•  Not isotropic
•  Preserves details for

oblique viewing angles
(non-uniform surface)

•  AF calculates the
“shape” of the surface
before mapping

•  The number of pixels
sampled depends on
the distance and view
angles relative to the
screen

•  Very expensive

Source: nvidia

Trilinear filtering Bilinear filtering

16x Anisotropic filtering 64x Anisotropic filtering

21

Color blending and alpha blending
•  Transparency effect (e.g. water, glasses, etc.)
• Source color blended with destination color
• Several blending methods

–  Additive
C = SrcPixel ⊗ (1,1,1,1) + DstPixel ⊗ (1,1,1,1) = SrcPixel + DstPixel

–  Subtractive
C = SrcPixel ⊗ (1,1,1,1) ― DstPixel ⊗ (1,1,1,1) = SrcPixel ― DstPixel

– Multiplicative
C = DstPixel ⊗ SrcPixel

–  Using Alpha value in the color (Alpha blending)
C = SrcPixel ⊗ (α,α,α,α) + DstPixel ⊗ (1-α,1-α,1-α,1-α)

–  And many more in the API …

22

Alpha blending (inverse source form)

No transparency Src=0.2 (triangle)
Dest=0.8 (square)

Src=0.5 (triangle)
Dest=0.5 (square)

Src=0.8 (triangle)
Dest=0.2 (square)

23

Another example w/out transparency

24

Another alpha blending example

Src=0.3 (rect) Dest=0.7 (checker)

Src=0.5 (orange rect) Dest=0.5 Src=0.6 (triangle) Dest=0.4

25

Alpha test

•  Reject pixels by checking their alpha values
•  Model fences, chicken wires, etc.

Texture: bar.jpg

if (α op val)
 reject pixel
else
 accept pixel

Straightforward
texture mapping

26

Multitexturing
• Map multiple textures to a polygon

–  Common APIs support 8 textures

• Performance will be reduced
• Multiple texturing stages in the

pipeline
•  Texture color will be calculated by

– Multiplication
–  Addition
–  Subtraction

Operation 1

Texture1
color

lit
color

Operation 2

Texture2
color

Operation 3

Texture3
color

Operation N

TextureN
color

Final Color

27

Multi-texturing example: light mapping

⊗

Some crumpled
paper texture

A spotlight map

Different alpha blending

28

Stenciling
• Stencil buffer

– To reject certain pixels to be displayed
– To create special effect similar to alpha test

• Mask out part of the screen
– Set together with Z-buffer in 3D API
– Perform prior to Z-buffer test

if ((stencil ref & mask)
 op (pixel val & mask))

 accept pixel
else
 reject pixel

29

Stencil buffer example

This window area
is set to be drawn
by stencil buffer

From http://www.ziggyware.com/readarticle.php?article_id=116

30

Mirror effect (1)
1.  Render the entire scene as normal (no reflection yet)
2.  Clear the entire stencil buffer to ‘0’ (i.e., mirror’s fragments)
3.  Render the mirror primitives and set the corresponding stencil buffer

fragment to ‘1’
4.  Render the reflected objects only if stencil test passes (i.e., value==1)

•  Using a “reflection matrix” for world transformation (Draw the
scene as if they are seen in the mirror)

Render the reflected
objects w/ stencil test

Clear stencil buffer

Stencil buffer

Set stencil buffer
for mirror object

Stencil buffer

From http://www.ziggyware.com/readarticle.php?article_id=116

31

Mirror effect (2)
Can be done in a reverse order
1.  Render the reflected image of the

scene using a “reflection matrix” for
world transformation (Draw the scene
as if they are seen in the mirror)

2.  Render non-reflected with stencil
buffer accept/reject test to prevent the
reflected image being drawn over

From http://www.ziggyware.com/readarticle.php?article_id=116

