= Q - ‘K a', :: " .‘..,3"-" l‘ﬁ_""-"u'

mUmcomz am GPU

‘Tn 1—1{\ ‘ﬁ;mn
FOR LL,\, UAIMES

,.x‘. % Texturing & Blending
\/\—\ Prof. Aaron Lanterman
(Based on slides by Prof. Hsien-Hsin Sean Lee

School of Electrical and Computer Engineering
Georgia Institute of Technology
Georgla[lm@ﬁ]ﬁuﬂﬁ(

‘\ | ofTechnal GleV4

Textures

* Rendering tiny triangles is slow

* Players won’t even look at some certain details
- Sky, clouds, walls, terrain, wood patterns, etc.

* Simple way to add details and enhance realism

* Use 2D images to map polygons

* Images are composed of 2D “texels”

* Can be used to substitute or blend with the lit
color of a texture-mapped surface

Georgialli
xoi’Tg':(’:h:L'

Texture coordinates

* Introduce one more component
to geometry
-Position coordinates
-Normal vector
-Color
-Texture coordinates

Georgialnsiiuie
5 »'nggch: LH> e ;""

Texture coordinate conventions

* Direct3D/XNA texture convention
- (u, v) coordinates for each vertex
- (0,0) = upper left corner
- (4,1) = lower right corner

* OpenGL texture convention
- (s, t) coordinates for each vertex
- (0,0) = bottom left corner
- (1,1) = upper right corner

Georgiali
S echn

9/5/11

Texture mapping example (1)

(0,0) (1,0) v7 v8
vo v1
()]
Direct3D/XNA convention
u v
Vo, 2
{vl.x, vl.y, vl.z, 1, 0},
{v2.x, v2.y, v2.z, 1, 1}
{v0.x, v0.y, v0.z, 0, 0}
{v3.x, v3.y, v3.z, 0, 1}

| Georgialns!
(o.i’ngch:u

Texture mapping example (2)

Texture 1 Texture 2

| Georgialn
(o.i’ngch: 1

“Perspective correct” texture mapping

Flat Affine Correct

From http://en.wikipedia.org/wiki/Texture_mapping

 Georgia
rci’ngch:

Repeated textures

(0,0 (1,0)
v 2
0,1) (1,1)
u v
{vl.x, vl.y, vl.z, .., O, O},
{v2.x, v2.y, v2.z, ., 5, 0}, V3 v0
{v0.x, vO.y, v0.z, .., 5, 3},
{v3.x, v3.y, v3.z, .., 0, 3},
Sosu

Repeated brick texture

{vl.x, vl.y, vl.z, ..
{v2.x, v2.y, v2.z, ..
{v0.x, v0.y, v0.z, ..
{v3.x, v3.y, v3.z, .

o © o

OO —C
-«—

, 6},

| Georgia
(‘ofﬂg:h:‘

Magnification

Texels Pixels on screen

* Texel and pixel mapping is rarely 1-to-1
* Mapped triangle is very close to the camera
¢ One texel maps to multiple pixels

Nearest point sampling (for magnification)

Texels Pixels on screen

* Choose the texel nearest the pixel’s center

Texels Pixels on screen

* Average the 2x2 texels surrounding a given pixel

|
| Georgia
(oﬁ’ng:h:

9/5/11

Bilinear filtering (for magnification)

R I - (1) * (1)
1-yI N R
yI + [x> (1)
+ O *x*y
Final Color

[[]: pixel enclosed by 4 texels

¢ Or take the weighted color values for the 2x2 texels
surrounding a given pixel

| Georgia
(ofl’ngch:

Minification

Color?

Texels

* Texel and pixel mapping is rarely 1-to-1
¢ Multiple texels map to one pixel

Pixels on screen

Nearest point sampling (for minification)

Pixels on screen
* Choose the texel nearest the pixel’s center i

| Georgial
('oi’ng:h:

R=155

G=132

B=30

* Average for the 2x2 texels corresponding to a given pixel

Pixels on screen

| Georgia
o Tecl

Tech

222

9/5/11

Mip-mapping (1)

* Multiple versions are provided for the same
texture

 Different versions have different levels of
details

- E.g., 7 LOD maps: 256x256, 128x128, 64x64,
32x32, 16x16, 8x8, 4x4

- Choose the closest maps to render a surface
* Maps can be automatically generated by 3D
API

| Georgia
(o:i’ngch, @

Mip-mapping (2)

* API or hardware can
- Choose the right one for the viewer
* Good performance for far triangles
* Good LOD for close-by objects

- Trilinearly interpolate

| Georgia
(o:i’ngch, 1

Tri-linear filtering using mipmaps

R=147 R=58
G=114 G=0
B=117 B=0
.
R=178 R=233
R=106 R=66 | | G=179 G=227 /1
g:?g g:g B=90 B=143
- . . Screen
Higher Res. Mip Map Lower Res. Mip Map Pixel
R=94 R=199
G=49 G=187| [y
B=48 B=96

* Interpolate between mipmaps
(Cesedn

Anisotropic filtering

|+ Not isotropic

* Preserves details for
oblique viewing angles
(non-uniform surface)

* AF calculates the
“shape” of the surface
before mapping

¢ The number of pixels
sampled depends on
the distance and view
angles relative to the
screen

* Very expensive

Bilinear filtering

Trilinear filtering

16x Anisotropic filtering 64x Anisotropic filtering

Source: nvidia

| Georgia
(oV":ng:h

9/5/11

Color blending and alpha blending

» Transparency effect (e.g. water, glasses, etc.)
* Source color blended with destination color

* Several blending methods
- Additive
C = SrcPixel ® (1,1,1,1) + DstPixel ® (1,1,1,1) = SrcPixel + DstPixel
- Subtractive
C = SrcPixel ® (1,1,1,1) — DstPixel ® (1,1,1,1) = SrcPixel — DstPixel
- Multiplicative
C = DstPixel ® SrcPixel
- Using Alpha value in the color (Alpha blending)
C = SrcPixel ® (a,a,0,0t) + DstPixel ® (1-a,1-a.,1-0,1-0)
- And many more in the API ...

Georgial st
@ ;:T;%h:w i

Alpha blending (inverse source form)

No transparency g::s:tgg ét(rise;r:g?e))

Src=0.5 (triangle) Src=0.8 (triangle)
Dest=0.5 (square) Dest=0.2 (square)
Georgiali
ofTechne

Another example w/out transparency

-
-
/
-

Another alpha blending example
e

Src=0.3 (rect) Dest=0.7 (checker)

.

Src=0.5 (orange rect) Dest=0.5

Src=0.6 (triangle) Dest=0.4

Georgiali]
o Tethnolog

9/5/11

Alpha test

Straightforward if

? (o op val)
texture mapping

reject pixel
else

accept pixel

Texture: bar.jpg

* Reject pixels by checking their alpha values
* Model fences, chicken wires, etc.

Multitexturing

* Map multiple textures to a polygon or color
Texture2

- Common APIs support 8 textures
Operation 1 :
color

¢ Performance will be reduced
Operation 2

* Multiple texturing stages in the

Texture3

pipeline collor
 Texture color will be calculated by
Operation 3
- Multiplication . Toxturen
- Addition 5 color

- Subtraction

Operation N

Final Color

Geo ia
s £

N

e
\\ .|
A ~\<\¥‘¥Q\‘“
Some crumpled A spotlight map
paper texture

-

Different alpha blending

Stenciling

* Stencil buffer
- To reject certain pixels to be displayed
- To create special effect similar to alpha test
* Mask out part of the screen
- Set together with Z-buffer in 3D API
- Perform prior to Z-buffer test

if ((stencil ref & mask)
op (pixel val & mask))
accept pixel
else
reject pixel

| Georgia
('oi’ng:h:

9/5/11

Stencil buffer example

This window area
is set to be drawn
by stencil buffer

 Geo orgial
From http://www.ziggyware.com/readarticle.php?article_id=116 || ©fTechs

error effect (1)

Render the entire scene as normal (no reflection yet)
Clear the entire stencil buffer to ‘0’ (i.e., mirror’ s fragments)

Render the mirror primitives and set the corresponding stencil buffer
fragmentto ‘1’

4. Render the reflected objects only if stencil test passes (i.e., value==1)

« Using a “reflection matrix” for world transformation (Draw the
scene as if they are seen in the mirror)

w N

Stencil buffer Stencil buffer

P

ok

' e

:f*”;&f%’\

Clear stencil buffer Set stencil buffer Render the reflected
for mirror object objects w/ stencil test

‘qurgiar I

From http://www.ziggyware.com/readarticle.php?article_id=116 || ©fTechne

Mirror effect (2)

Can be done in a reverse order

1. Render the reflected image of the
scene using a “reflection matrix” for
world transformation (Draw the scene
as if they are seen in the mirror)

2. Render non-reflected with stencil
buffer accept/reject test to prevent the
reflected image being drawn over

eorgla
From http://www.ziggyware.com/readarticle.php?article_id=116 Tech:

9/5/11

