--ARSIA/CSARD < AE S

q
h’* ' “) S \ .

-

UL’ TiCORE am GPU

Do YCRAYIYITIG
,ft':. .. ';.'55 VAN ?5& e ..,.b;fif :_g. ? §$‘ E

roRVIDEO GANES

Introduction to C#

Prof. Aaron Lanterman
School of Electrical and Computer Engineering
Georgia Institute of Techng)logy

| Georgialnsiitute
M o Technologwy

—

References

Fepramming e e ammeen Great article:

Jesse Liberty, “Top ten traps in
C# for C++ programmers”

R www.ondotnet.com/pub/a/oreilly/
o dotnet/news/

Essentials . programmingCsharp_0801.html

Great slide set:

C#

by Ben Albahari, “Introduction to C#
slides” from Jim
Peter Drayton’ and Whitehead’s “Game

Brad Merrill, 2001 Design Experience’

O'REILLY’ RS ot Maret |
| Georgialnsiuie
L o Techmology

Classes and objects

» A class combines together

—Data
* Class variables

—Behavior
 Methods

* A key feature of object-oriented
languages

—Procedural languages, such as C, did not
require clustering of data and behavior

From Jim Whitehead'’s “Introduction to C# slides”
from his “Game Design Experience” class Ge%_;%ﬁﬂnrjﬁf‘f
Creative Commons Attribution 3.0 4 e

Class/instance distinction

 Class defines variables & methods

 Need to create instances of the class,
called objects, to use variables &
methods

* Exception: static methods and variables

From Jim Whitehead'’s “Introduction to C# slides”
from his “Game Design Experience” class Ge%_;%ﬁ%:rjr‘f
Creative Commons Attribution 3.0 e

Hello World example

class Hello

{
static void Main()
// Use the system console object
System.Console.WriteLine(“Hello, World!”);
}

}

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class Ge%_re%gh
Creative Commons Attribution 3.0 fl == HE

Key language features

“Unified” object system
— Every type is an “object,” even primitives
Single inheritance

Interfaces
— Specify methods & interfaces, but no implementation

« Structs
— A restricted, lightweight (efficient) type

Delegates
— EXxpressive typesafe function pointer
— Useful for strategy and observer design patterns

From Jim Whitehead'’s “Introduction to C# slides”
from his “Game Design Experience” class Ge%_;%ﬁﬂnrjﬁf‘f
Creative Commons Attribution 3.0 4 e

Defining a class

[attributes] [access-modifiers] class identifier [:base-class [,interface(s)]] { class-body }

class A

{

int num = 0; // a simple variable

A(int initial num) { num = initial num; }
// set initial value of num

« Attributes: used to add metadata to a class (can be ignored)
» Access modifiers: one of
— public, private, protected, internal, protected internal
 Base-class
— Indicates (optional) parent for inheritance
* Interfaces
— Indicates (optional) interfaces that supply method signatures that need to
be implemented in the class
Class-body
— Code for the variables and methods of the class

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class Ge%_re%g%
Creative Commons Attribution 3.0 fl == HE

Inheritance

Operationally

— If class B inherits from base class A, it gains all of the
variables and methods of A

— Class B can optionally add more variables and
methods

— Class B can optionally change the methods of A

* Uses
— Reuse of class by specializing it for a specific context
— Extending a general class for more specific uses

* Interfaces

— Allow reuse of method definitions of interface
— Subclass must implement method definitions

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class Geg.;%lﬁ?V e M;ﬂ: ﬁkﬂ?t !:J'gkﬂﬂmm
Creative Commons Attribution 3.0 .

Inheritance example

class A {
public void display one() {
System.Console.WriteLine(“From A");
}

}

class B : A {
public void display two() {
System.Console.WriteLine(“From B, child of A");
}

}
class App {

static void Main() {
A a = new A(); // Create instance of A
B b = new B(); // Create instance of B
a.display_one(); // I come from A
b.display one(); // I come from A
b.display two(); // I come from B, child of A
}
}
From Jim Whitehead’s “Introduction to C# slides”

from his “Game Design Experience” class Geg_re%g% f ftute
Creative Commons Attribution 3.0 | oL

Visibility
* A class is a container for data and behavior

Often want to control over which code:
— Can read & write data
— Can call methods

Access modifiers:
— Public

* No restrictions; members visible to any method of any class

— Private

 Members in class A marked private only accessible to methods
of class A

« Default visibility of class variables (but is good to state this
explicitly)
— Protected
 Members in class A marked protected accessible to methods of
class A and subclasses of A

From Jim Whitehead’s “Introduction to C# slides”

from his “Game Design Experience” class Ge%'re%ﬁ? jf it 1 e
Creative Commons Attribution 3.0

Visibility example

class A
public int « Class A can see:
num slugs; — num_slugs: is public

protected int

— num trees: is protected, but is
num trees; —

defined in A

} e Class B can see:

class B : A { — num_slugs: is publicin A

private int — num_trees: Is protected in parent A
num_tree sitters; — num_tree_sitters:is private, but
is defined in B
; « Class C can see:
class C { .. } — num_slugs: is public in A
— Can't see:

e num trees: protected in A
o t sitters: private in B
From Jim Whitehead’s “Introduction to C# slides” pum_tree_si P

from his “Game Design Experience” class Geg_re%ﬁﬁ j”‘f
Creative Commons Attribution 3.0 . B

Constructors

« Use “new’ to create a new object instance
— This causes the “constructor” to be called

* A constructor is a method called when an object
IS created

— C# provides a default constructor for every class
« Creates object but takes no other action

— Typically classes have explicitly provided constructor

Constructor
— Has same name as the class

— Can take arguments

— Usually public, though not always

« Singleton design pattern makes constructor private to ensure
only one object instance is created

From Jim Whitehead’s “Introduction to C# slides”

from his “Game Design Experience” class Ge%_re%ﬁw? jf i 1 e
Creative Commons Attribution 3.0

Type system (1)

« Value types: Directly contain data
— Intrinsic types and structs
— “Passed by value” (copied)
— Cannot be null
— Allocated on the stack (unless part of a reference type)

* Reference types: Contain references to objects
— Classes and interfaces, and “boxed” value types
— “passed by reference” (implicit pointer)
— May be null

— Variables sit on the stack, but hold a pointer to an address on the
heap; the “real object” is allocated on heap

Slide adapted from “Introduction to C#”, Anders Hejlsberg

www.ecma-international.org/activities/Languages/Introduction%20to%20Csharp.ppt

From Jim Whitehead'’s “Introduction to C# slides”
from his “Game Design Experience” class Ge%_;%ﬁhrjw‘f
Creative Commons Attribution 3.0 4 e

Type system (2)

int 1 = 123;

string s = "Hello world";
i 123
S . * "Hello world™

Slide adapted from “Introduction to C#”, Anders Hejlsberg

www.ecma-international.org/activities/Languages/Introduction%20to%20Csharp.ppt

From Jim Whitehead’s “Introduction to C# slides”

from his “Game Design Experience” class ‘ q‘i‘%;%ﬁ]ﬁ?}?f fj
. . . ou LICOLXS VY
Creative Commons Attribution 3.0 | S

Unified type system

 All types ultimately inherit from object

—classes, enums, arrays, delegates,
structs,

* An implicit conversion exists from any type
to type object

object
Stream Hashtable double
MemoryStream FileStream

: : ' : : ” Slide from “Introduction to C#”,
From Jim Whitehead’s “Introduction to C# slides 7Andqrs Hejlsberg

from his “Game Design Experience” class Georglﬁmmﬁ%ﬁm@ rglactivities/Languages/
i i i LCCphHo4GdtEN %20t0%20Csharp.ppt
Creative Commons Attribution 3.0 4iglign%20t0%20Csharp.pp

Boxing and unboxing

« Boxing
— Process of converting a value type to the type object

— Wraps value inside a System.Object and stores it on the
managed heap

« Can think of this as allocating a “box”, then copying the value into it
* Unboxing

— Extracts the value type from the object

— Checks type of box, copies value out
int 1 = 123;
object o = (object) 1i;

[123 int J = (int) o;
O @
j| 123
From Jim Whitehead’s “Introduction to C# slides” | Slide a(g e ffrr: Hlen'lt;%ilrmtion
from his “Game Design Experience” class | 9e%;%ﬁ@%ﬁpﬁm'g’ttJ’Lg%’
| = = Y Introdaetion %20t0%20Csharp.ppt

Creative Commons Attribution 3.0

Boxing and unboxing example

using System;
public class UnboxingTest

{
public static void Main()
{
S If o is null or not an int an
, InvalidCastException is thrown
/ /Boxing
object o =
// unboxingy(must be explicit)
int j = (int) o;
Console.WriteLine("3j: {0}", 3);
}
}
From Jesse Liberty, “Top ten traps in C# for C++ programmers,” ‘Georgiah—;u:ﬁ;{f{ e

www.ondotnet.com/pub/a/oreilly/dotnet/news/programmingCsharp_0801.html | ofTechnelogy

Predefined types

» C# predefined types

— Reference object, string

— Signed sbyte, short, int, long
— Unsigned byte, ushort, uint, ulong

— Character char (2 byte, Unicode)

— Floating point float, double, decimal
— Logical bool

* Predefined types are simply aliases for system-
provided types

— For example, int == System.Int32

: : ' : : ” Slide from “Introduction to C#”,
From Jim Whitehead’s “Introduction to C# slides 7_Andqrs Hejlsberg

from his “Game Design Experience” class Georglﬁmémgﬁ@m alibral orgiactivities/Languages/
Creative Commons Attribution 3.0

IntfodGation%20to%20Csharp.ppt

Pop quiz: C

 What is the value of b after this code is run
(assume C code)?

a = 17;
b = 3;
if (a = 5)
!

b = 10;
}

Georgialnstiiute
- e Technologyy

Booleans in C#

 In C, O is false, “anything else” is true

 In C#, this code will give a compile time error
— C# has distinct Boolean values, true and false

a = 7;
b 3;
if (a = 5)
{

b = 10;

GeorglaWr fujt ke
FTechn J O \,7,\ Y/

Enumerations (1)

enum Grades

{
gradeA = 94,
gradeAminus = 90,
gradeBplus = 87,
gradeB = 84

}

» Base type can be any integral type
(ushort, long) except for char

 Defaults to int

* Must cast to int to display in Writeln
— Example: (int)g.gradeA

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class Ge%_;%ﬁ% jf Ly ke
Creative Commons Attribution 3.0

Enumerations (2)

e Defaults to start at zero

enum Days {Sat, Sun, Mon, Tue, Wed,
Thu, Fri};

« Can override initial value

enum Days {Sat=1, Sun, Mon, Tue, Wed,
Thu, Fri};

From Jim Whitehead'’s “Introduction to C# slides”
from his “Game Design Experience” class Ge%_;%ﬁ%:rjr‘f
Creative Commons Attribution 3.0 e

Decimal type

* Afixed precision
number
up to 28 digits plus
decimal point

» Useful for money
calculations

e 300.5m
o Suffix “m” or “M”
Indicates decimal

tackyspoons, Flickr
www.flickr.com/photos/tackyspoons/812710409/

From Jim Whitehead’s “Introduction to C# slides” |
from his “Game Design Experience” class ‘?ﬁ%;%ﬁ?ﬁﬁf%%}“
Creative Commons Attribution 3.0 V< IO

Variables

int remaining = 0;
string name;

float myfloat = 0.5f;
bool zombified = true;

const int freezingPoint = 32;

» Variables must be initialized or assigned to
before first use

» Class members take a visibility operator
beforehand (private by default)

» Constants cannot be changed

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class Ge%_;%ﬁ% jf Ly ke
Creative Commons Attribution 3.0

Structs vs. classes

» Structs are value types
— More efficient when used in arrays

— Less efficient when used in collections

 Collections expect reference types, so structs must
be “boxed” - boxing has overhead

— Support properties, methods, fields, and
operators...

— ...but not inheritance or destructions

» Classes are reference types
— May be more efficient when used in collections

GeorgnaWr Stutdite
TeCh J OX \\7

Reference parameters

* C, C++, and C# allow a function to only return one
value

* |In C++ and C, you can get around this by passing in
pointers

e |In C#:

— Reference types in the parameter list may be changed by
the function

— To let a function change a value type in the parameter list,
can use an explicit ref keyword:

ref mustbe . public void Changer(ref int x)
used in both
declaration

and call Aaron.Changer(ref int aaronx);

Georgia st
off Technology

Variables must be initialized

public void Changer(ref int Xx)

int aaronx;
Aaron.Changer (ref int aaronx);

AN

C# will give a compile-time error

since aaronx has not been
Initialized

In general, variables in C# must be assigned
before being passed into a function

Georgia st
off Technology

A clunky workaround

public void Changer(ref int Xx)

int aaronx = 0;
Aaron.Changer(ref int aaronx);

Georgialnstiiute
off Technology

The out keyword

public void Changer(out int Xx)

int aaronx;
Aaron.Changer (out int aaronx);

T

out keyword like ref, except it tells C# that
it' s OK for the value to be undefined

C# will demand that you assign aaronx
before the function returns!

Georgia st
off Technology

C# Flnallzers (1)

~MyClass (

{
// your code to release unmanaged resources
// used by object

} is syntactic sugar for

MyClass.Finalize()

{
// your code to release unmanaged
// resources used by object
base.Finalize();

} Your finalizer should not try to deal with other C# reference
objects - only deal with unmanaged resources!

Adapted from Jesse Liberty, “Top ten traps in C# for C++ programmers,” Georg|a1r 1S Situtile)
www.ondotnet.com/pub/a/oreilly/dotnet/news/programmingCsharp_0801.html | FTechmn Jf—i*:,;f.\];w 20

C# Finalizers (2)

* Finalizer will be called when the .NET
garbage collector decides to call it

—You don’t get to decide when it's called

* Only define a finalizer if you really
need one

— Calling it involves some overhead

Georgialnstiiute
off Technology

C# arrays are objects

Java: int arrl[];
C#: int[]arrl;

arrl = new int[5];

arrl = new int[5]1{10,20,30,40,50};

int[] arr2 = new int[5] {10,20,30,40,50};
int[] arr2 = {10,20,30,40,50};

Georgna?m Statdite
“Technolo 7\]‘;,

Multi-dimensional arrays

string[,] bingo;

bingo = new string[3,2] {{“a”,”B"},

11 77 7 7 11 7 7 77

{C,D}{E,F}};
bingo = new String[’] {{“A”,”B”},

11 ”” 7 7 11 7 7 44

{C,D}},{E , F }};

String[,] bingo — {{“A”,”B”},{“C”,”D”},

11 ”” 7 7

{E, F}};

Georgialnstiiute
- efTechnclogly

Jagged arrays

» Arrays of arrays

int[][] arr =
new int[][]

{new int[] {10,11,12}, new int[] {13, 14,
15, 16, 17}};

Georgia st
off Technology

Array iteration

int[] arr = {16, 17, 18};
foreach (int x in arr)

{

System.Console.WriteLine(x.ToString());

}

* Works on arrays and collections
 Listis read-only in the loop
« Can’t change x in the loop

GeorgnaWr Stutdite
Info from www.csharp-station.com/Tutorials/Lesson04.aspx Mechmology

foreach detalls

“In C#, it Is not strictly necessary
for a collection class to inherit from
IEnumerable and IEnumerator
In order to be compatible with
foreach; as long as the class has
the required GetEnumerator,
MoveNext, Reset, and Current
members, 1t will work with
foreach.”

qgorgiaj;@f ttike
From msdn.microsoft.com/en-us/library/aa288462(v=vs.71).aspx ciffechmology

Switch statement

const int raining =
const int snowing =
int weather = snowin
switch (weather) {
case snowilng:
System.Console.Writeln(“It is snowing!"”);
goto case raining;
case raining
System.Console.Writeln(I am wet!”);
break;
default:

System.Console.Writeln(Weather OK");
break;

1;
0;
g7

}
 Alternativeto if

* Typically use break
« Can use goto to continue to another case

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class Geg_;%lﬁWF Stuie
Creative Commons Attribution 3.0 .

