
9/20/11

1

Introduction to C#

Prof. Aaron Lanterman
School of Electrical and Computer Engineering

Georgia Institute of Technology

2

References

 by Ben Albahari,
 Peter Drayton, and
 Brad Merrill, 2001

Great article:

Jesse Liberty, “Top ten traps in
C# for C++ programmers”

www.ondotnet.com/pub/a/oreilly/
dotnet/news/
programmingCsharp_0801.html

“Introduction to C#
slides” from Jim
Whitehead’s “Game
Design Experience”

Great slide set:

Classes and objects
•  A class combines together

– Data
• Class variables

– Behavior
• Methods

•  A key feature of object-oriented
languages
– Procedural languages, such as C, did not

require clustering of data and behavior

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

Class/instance distinction
•  Class defines variables & methods

•  Need to create instances of the class,
called objects, to use variables &
methods

•  Exception: static methods and variables

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

9/20/11

2

Hello World example
class Hello!
{!
 static void Main()!
 {!
 // Use the system console object !
 System.Console.WriteLine(“Hello, World!”);!
 }!
}!
!
!

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

Key language features
•  “Unified” object system

–  Every type is an “object,” even primitives

•  Single inheritance
•  Interfaces

–  Specify methods & interfaces, but no implementation

•  Structs
–  A restricted, lightweight (efficient) type

•  Delegates
–  Expressive typesafe function pointer
–  Useful for strategy and observer design patterns

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

Defining a class

•  Attributes: used to add metadata to a class (can be ignored)
•  Access modifiers: one of

–  public, private, protected, internal, protected internal!
•  Base-class

–  Indicates (optional) parent for inheritance
•  Interfaces

–  Indicates (optional) interfaces that supply method signatures that need to
be implemented in the class

•  Class-body
–  Code for the variables and methods of the class

[attributes] [access-modifiers] class identifier [:base-class [,interface(s)]] { class-body }
!
class A!
{!
 int num = 0; // a simple variable!
!
 A(int initial_num) { num = initial_num; }!
! ! ! !// set initial value of num!

}!

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

Inheritance
•  Operationally

–  If class B inherits from base class A, it gains all of the
variables and methods of A

–  Class B can optionally add more variables and
methods

–  Class B can optionally change the methods of A
•  Uses

–  Reuse of class by specializing it for a specific context
–  Extending a general class for more specific uses

•  Interfaces
–  Allow reuse of method definitions of interface
–  Subclass must implement method definitions

cking, Flickr
www.flickr.com/photos/spotsgot/1500855/

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

9/20/11

3

Inheritance example
 class A {!
 public void display_one() {!
 System.Console.WriteLine(“From A”);!
 }!
}!
!
class B : A {!
!public void display_two() {!

 System.Console.WriteLine(“From B, child of A”);!
 }!
}!
!
class App {!
 static void Main() {!
 A a = new A(); // Create instance of A!
 B b = new B(); // Create instance of B!
!
 a.display_one(); // I come from A!
 b.display_one(); // I come from A!
 b.display_two(); // I come from B, child of A!
 }!
}!
!

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

Visibility
•  A class is a container for data and behavior
•  Often want to control over which code:

–  Can read & write data
–  Can call methods

•  Access modifiers:
–  Public

•  No restrictions; members visible to any method of any class
–  Private

•  Members in class A marked private only accessible to methods
of class A

•  Default visibility of class variables (but is good to state this
explicitly)

–  Protected
•  Members in class A marked protected accessible to methods of

class A and subclasses of A

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

Visibility example
class A {!
 public int
num_slugs;!

 protected int
num_trees;!

 …!
}!
!
class B : A {!
 private int
num_tree_sitters; !

 … !
}!
!
class C { … }!

•  Class A can see:
–  num_slugs: is public
–  num_trees: is protected, but is

defined in A

•  Class B can see:
–  num_slugs: is public in A
–  num_trees: is protected in parent A
–  num_tree_sitters: is private, but

is defined in B

•  Class C can see:
–  num_slugs: is public in A
–  Can’t see:

•  num_trees: protected in A
•  num_tree_sitters: private in B

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

Constructors

•  Use “new” to create a new object instance
–  This causes the “constructor” to be called

•  A constructor is a method called when an object
is created
–  C# provides a default constructor for every class

•  Creates object but takes no other action
–  Typically classes have explicitly provided constructor

•  Constructor
–  Has same name as the class
–  Can take arguments
–  Usually public, though not always

•  Singleton design pattern makes constructor private to ensure
only one object instance is created

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

9/20/11

4

Type system (1)
•  Value types: Directly contain data

–  Intrinsic types and structs
–  “Passed by value” (copied)
–  Cannot be null
–  Allocated on the stack (unless part of a reference type)

•  Reference types: Contain references to objects
–  Classes and interfaces, and “boxed” value types
–  “passed by reference” (implicit pointer)
–  May be null
–  Variables sit on the stack, but hold a pointer to an address on the

heap; the “real object” is allocated on heap

Slide adapted from “Introduction to C#”, Anders Hejlsberg
www.ecma-international.org/activities/Languages/Introduction%20to%20Csharp.ppt

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

Type system (2)
int i = 123;!
string s = "Hello world";!

123 i

s "Hello world"

Slide adapted from “Introduction to C#”, Anders Hejlsberg
www.ecma-international.org/activities/Languages/Introduction%20to%20Csharp.ppt

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

Unified type system
•  All types ultimately inherit from object!

– classes, enums, arrays, delegates,
structs, …

•  An implicit conversion exists from any type
to type object

Stream

MemoryStream FileStream

Hashtable double int

object

Slide from “Introduction to C#”,
Anders Hejlsberg

www.ecma-international.org/activities/Languages/
Introduction%20to%20Csharp.ppt Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

•  Boxing
–  Process of converting a value type to the type object
–  Wraps value inside a System.Object and stores it on the

managed heap
•  Can think of this as allocating a “box”, then copying the value into it

•  Unboxing
–  Extracts the value type from the object
–  Checks type of box, copies value out

int i = 123;!
object o = (object) i;!
int j = (int) o;!123 i

o

123

System.Int32

123 j

Slide adapted from “Introduction
to C#”, Anders Hejlsberg

www.ecma-international.org/activities/Languages/
Introduction%20to%20Csharp.ppt

Boxing and unboxing

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

9/20/11

5

17

Boxing and unboxing example
using System;!
public class UnboxingTest !
{!
 public static void Main() !
 {!
 int i = 123;!

 //Boxing!
 object o = i;!
!
 // unboxing (must be explicit)!
 int j = (int) o;!
 Console.WriteLine("j: {0}", j);!
 }!
}!

If o is null or not an int an
InvalidCastException is thrown

From Jesse Liberty, “Top ten traps in C# for C++ programmers,”
www.ondotnet.com/pub/a/oreilly/dotnet/news/programmingCsharp_0801.html

Predefined types
•  C# predefined types

– Reference object, string!
– Signed sbyte, short, int, long!
– Unsigned byte, ushort, uint, ulong
– Character char (2 byte, Unicode)
– Floating point float, double, decimal!
– Logical bool!

•  Predefined types are simply aliases for system-
provided types
– For example, int == System.Int32!

Slide from “Introduction to C#”,
Anders Hejlsberg

www.ecma-international.org/activities/Languages/
Introduction%20to%20Csharp.ppt Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

19

Pop quiz: C

a = 7;!
b = 3;!
if (a = 5)!
{ !
 b = 10;!
}!

•  What is the value of b after this code is run
(assume C code)?

20

Booleans in C#
•  In C, 0 is false, “anything else” is true
•  In C#, this code will give a compile time error

– C# has distinct Boolean values, true and false!

a = 7;!
b = 3;!
if (a = 5)!
{ !
 b = 10;!
}!

9/20/11

6

Enumerations (1)

•  Base type can be any integral type
(ushort, long) except for char!

•  Defaults to int!
•  Must cast to int to display in Writeln

– Example: (int)g.gradeA!

enum Grades!
{!
 gradeA = 94,!
 gradeAminus = 90,!
 gradeBplus = 87,!
 gradeB = 84!
}!

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

Enumerations (2)

•  Defaults to start at zero!

enum Days {Sat, Sun, Mon, Tue, Wed,
! ! Thu, Fri};!

!
•  Can override initial value!

enum Days {Sat=1, Sun, Mon, Tue, Wed,
! ! Thu, Fri};!

!

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

Decimal type

tackyspoons, Flickr
www.flickr.com/photos/tackyspoons/812710409/

•  A fixed precision
number
up to 28 digits plus
decimal point

•  Useful for money
calculations

•  300.5m
•  Suffix “m” or “M”

indicates decimal

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

Variables

•  Variables must be initialized or assigned to
before first use

•  Class members take a visibility operator
beforehand (private by default)

•  Constants cannot be changed

int remaining = 0;!
string name;!
float myfloat = 0.5f;!
bool zombified = true; !
!
const int freezingPoint = 32; !

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

9/20/11

7

25

Structs vs. classes
•  Structs are value types

– More efficient when used in arrays
– Less efficient when used in collections

•  Collections expect reference types, so structs must
be “boxed” - boxing has overhead

– Support properties, methods, fields, and
operators…

– …but not inheritance or destructions

•  Classes are reference types
– May be more efficient when used in collections

26

Reference parameters
•  C, C++, and C# allow a function to only return one

value
•  In C++ and C, you can get around this by passing in

pointers
•  In C#:

–  Reference types in the parameter list may be changed by
the function

–  To let a function change a value type in the parameter list,
can use an explicit ref keyword:!

public void Changer(ref int x)!
!
Aaron.Changer(ref int aaronx);!

!ref must be
 used in both
 declaration
 and call

27

public void Changer(ref int x)!
!
int aaronx;!
Aaron.Changer(ref int aaronx);!

 C# will give a compile-time error
since aaronx has not been
initialized!

Variables must be initialized

 In general, variables in C# must be assigned
before being passed into a function!

28

A clunky workaround
public void Changer(ref int x)!
!
int aaronx = 0;!
Aaron.Changer(ref int aaronx);!

9/20/11

8

29

The out keyword
public void Changer(out int x)!
!
int aaronx;!
Aaron.Changer(out int aaronx);!

 out keyword like ref, except it tells C# that
it’s OK for the value to be undefined!

 C# will demand that you assign aaronx
before the function returns!!

30

C# Finalizers (1)
~MyClass()!
{!
 // your code to release unmanaged resources!
 // used by object!
}! is syntactic sugar for
MyClass.Finalize()!
{!
 // your code to release unmanaged!
 // resources used by object!
 base.Finalize();!
}! Your finalizer should not try to deal with other C# reference

objects - only deal with unmanaged resources!
Adapted from Jesse Liberty, “Top ten traps in C# for C++ programmers,”
www.ondotnet.com/pub/a/oreilly/dotnet/news/programmingCsharp_0801.html

31

C# Finalizers (2)
•  Finalizer will be called when the .NET

garbage collector decides to call it
– You don’t get to decide when it’s called

•  Only define a finalizer if you really
need one
– Calling it involves some overhead

32

C# arrays are objects
Java: int arr1[];!
C#: int[]arr1;!

arr1 = new int[5];!
arr1 = new int[5]{10,20,30,40,50};!
int[] arr2 = new int[5] {10,20,30,40,50};!
int[] arr2 = {10,20,30,40,50};!

9/20/11

9

33

Multi-dimensional arrays
string[,] bingo;!
!
bingo = new string[3,2] {{“A”,”B”},
{“C”,”D”},{“E”,”F”}}; !

bingo = new string[,] {{“A”,”B”},
{“C”,”D”},{“E”,”F”}};!

!
string[,] bingo = {{“A”,”B”},{“C”,”D”},
{“E”,”F”}};!

!
!

34

Jagged arrays

int[][] arr = !
new int[][]!
 {new int[] {10,11,12}, new int[] {13, 14,
15, 16, 17}};!

•  Arrays of arrays

35

Array iteration
int[] arr = {16, 17, 18};!
foreach (int x in arr)!
{!
 System.Console.WriteLine(x.ToString());!
}!

•  Works on arrays and collections
•  List is read-only in the loop
•  Can’t change x in the loop

Info from www.csharp-station.com/Tutorials/Lesson04.aspx 36

foreach details
“In C#, it is not strictly necessary
for a collection class to inherit from
IEnumerable and IEnumerator
in order to be compatible with
foreach; as long as the class has
the required GetEnumerator,
MoveNext, Reset, and Current
members, it will work with
foreach.”

From msdn.microsoft.com/en-us/library/aa288462(v=vs.71).aspx

9/20/11

10

Switch statement

•  Alternative to if!
•  Typically use break!
•  Can use goto to continue to another case

const int raining = 1;!
const int snowing = 0;!
int weather = snowing;!
switch (weather) {!
 case snowing:!
! !System.Console.Writeln(“It is snowing!”);!

 goto case raining;!
 case raining:!
 System.Console.Writeln(I am wet!”);!
 break;!
 default:!
 System.Console.Writeln(Weather OK”);!
 break;!
}!

Creative Commons Attribution 3.0

From Jim Whitehead’s “Introduction to C# slides”
from his “Game Design Experience” class

