
Introduction to
Multithreading
Prof. Aaron Lanterman

School of Electrical and Computer Engineering
Georgia Institute of Technology

2

References (1)

 by Ben Albahari,
 Peter Drayton, and
 Brad Merrill, 2001 by Joseph Hall, 2008

3

References (2)
Francisco
Balena

2006

Microsoft
Press

4

References (3)

Tons of stuff
from

Microsoft’s
Bruce Dawson

5

Threading example 1
public static void SyncProb () {!
 // Create 10 secondary threads!
 for (int i = 0; i <= 9; i++) {!
 Thread t = new Thread(SyncProb_Task);!
 t.Start(i)!
 }!
}!
 !
static void SyncProb_Task(object obj) {!
 int number = (int) obj;!
 for (int i = 1; i <= 1000; i++) {!
 Console.Write(“ “);!
 Console.Write(number);!
 }!
}!
 !

From F. Balena, “Visual C# 2005: The Base Class Library,” p. 468.

6

Threading example 1, with lock
// The lock object; any nonnull reference value !
// shared by all threads that need to be synchronized!
// will do.!
static Object consoleLock = new Object();!
 !
static void SyncProb_Task(object obj) {!
 int number = (int) obj;!
 for (int i = 1; i <= 1000; i++) {!
 lock (consoleLock) {!
 Console.Write(“ “);!
 Console.Write(number);!
 }!
 }!
}!
 !

From F. Balena, “Visual C# 2005: The Base Class Library,” p. 469.

7

Threading example 2
using System;!
using System.Threading;!
class ThreadTest!
{!
!static void Main()!

 {  
 Thread t = new Thread(new ThreadStart(Go));!

 t.Start();!
 Go();!
!}!

 static void Go() !
 {!
! for (char c=‘a’; c <= ‘z’; c++)!
! Console.Write(c);!

 }!
}!

static methods are part of the
class, not particular instances

Example from “C# Essentials,” pp. 107-108.

8

Threading example 2 output
using System!
using System.Threading;!
class ThreadTest!
{!
 static void Main()!
 {  

 Thread t = new Thread(new ThreadStart(Go));!
 t.Start();!
 Go();!

!}!
 static void Go() !
 {!

! for (char c=‘a’; c <= ‘z’; c++)!
! Console.Write(c);!

 }!
}!

abcdabcdefghijklmnopqrsefg!
hjiklmnopqrstuvwxyztuvwxyz!

Output:

Example from “C# Essentials,” pp. 107-108.

9

Threading example 2, with lock
using System;!
using System.Threading;!
class LockTest {!
!static void Main() {  
 LockTest lt = new LockTest();!

! Thread t = new Thread(new ThreadStart(lt.Go));!
 t.Start();!
 lt.Go();!
!}!

 void Go() {!
 lock(this)!
 for (char c=‘a’; c <= ‘z’; c++)!
 Console.Write(c);!
 }!
}!

this references the current instance
of the class (can’t use this in static
methods)

Example from “C# Essentials,” pp. 107-108.

10

Threading ex. 2 output, w/lock
using System;!
using System.Threading;!
class LockTest {!
!static void Main() {  
 LockTest lt = new LockTest();!

! Thread t = new Thread(new ThreadStart(lt.Go));!
 t.Start();!
 lt.Go();!
!}!

 void Go() {!
 lock(this)!
 for (char c=‘a’; c <= ‘z’; c++)!
 Console.Write(c);!
 }!
}!

abcdefghijklmnopqrstuvwxyz!
abcdefghijklmnopqrstuvwxyz!

Output:

Example from “C# Essentials,” pp. 107-108.

11

Lock: behind the curtain
!
lock(expression)!
{ !
 // mycode!
}!
!

 ! ! ! is syntactic sugar for
!
System.Threading.Monitor.Enter(expression);!
try {!
 // mycode!
}!
finally {!
 System.Threading.Monitor.Exit(expression);!
}!
!
!

From “C# Essentials,” pp. 108-109

Lock advice from MSDN

12

•  “In general, avoid locking on a public type,
or instances beyond your code's control…
–  lock(this) is a problem if the instance can be

accessed publicly.
–  lock(typeof(MyType)) is a problem if MyType

is publicly accessible.
–  lock(“myLock”) is a problem since any other

code in the process using the same string, will
share the same lock.”

http://msdn.microsoft.com/en-us/library/c5kehkcz(VS.80).aspx

Lock advice from Rico Mariani

13

class MyClass {  
 private static String myLock = “MyLock”; !
 public void Foo() {  
 lock(myLock) { ... }  
 }  
}!

•  “This is bad because string literals are normally interned,
meaning that there is one instance of any given string
literal for the entire program. The exact same object
represents the literal…on all threads. So if someone else
comes along and locks a literal named “MyLock” his
literal will interfere with yours.

•  Recommendation:
private static Object myLock = new Object();!

http://blogs.msdn.com/ricom/archive/2003/12/06/41779.aspx

Don’t lock on value types

14

• Value types can be “boxed” to act
as reference types…

• …but each lock construct will
create a different box

Grrrrrrrrrrr!!!!!
•  XNA on Xbox 360 uses Compact Framework,

not full .NET like on Windows
•  Compact Framework has a Monitor class (so

can use locks), but it doesn’t implement Pulse/
Wait and their variations L

•  Also missing Semaphores
•  Available in “pro Xbox 360 development,” i.e.

C++ XDK
–  According to a former student who asked about it

during a job interview with EA

15

16

One Mutex

From F. Balena, “Visual C# 2005: The Base Class Library,” p. 478.

// This Mutex object must be accessible to all threads.!
Mutex m = new Mutex();!
!
public void WaitOneExample();!
{!
 // Attempt to enter the synchronized section,!
 // but give up after 0.1 seconds!
 if (m.WaitOne(100, false))!
 {!
 // Enter the synchronized section.!
 …!
 // Exit the synchronized section, and release the Mutex.!
 m.ReleaseMutex();!
 }!
}! A mutex is called “signaled” if

no thread currently owns it

17

Many Mutexes - WaitAny
static Mutex[] mutexes = !
 { new Mutex(), new Mutex(), new Mutex() };!
!
public void WaitAnyExample();!
{!
 // Wait until a resource becomes available.!
 // (Returns the index of the available resource.)!
 int mutexNdx = Mutex.WaitAny(mutexes);!
 // Enter the synchronized section.!
 // (This code should use only the!
 // resource corresponding to mutexNdx.)!
 …!
 // Exit the synchronized section, and release the Mutex.!
 mutexes[mutexNdx].ReleaseMutex();!
}!

From F. Balena, “Visual C# 2005: The Base Class Library,” p. 479.

18

Many Mutexes - WaitAll

• Wait until all resources have been
released

• Useful if you can’t proceed until all
the other threads are done

!

Mutex.WaitAll(mutexes)!

From F. Balena, “Visual C# 2005: The Base Class Library,” pp. 480.

19

Naming a Mutex (available on Windows)

•  If a Mutex with that name already
exists, caller gets a reference to it;
otherwise a new Mutex is created

•  Lets you share Mutex objects among
different applications
– Not too relevant to video game

programming

!
!
Mutex m = new Mutex(false,”mutexname”);!

From F. Balena, “Visual C# 2005: The Base Class Library,” pp. 480.

20

Mutexes vs. Monitor locks
• Mutexes slower than locks

(around 20 times slower!)
– Monitor locks operating at the level

of the CLR
– Mutexes operate at the OS level

• Mutexes generally reserved for
interprocess communications (vs.
interthread)

 Info from B. Dawson, “Coding For Multiple Cores on Xbox
360 and Microsoft Windows,” http://msdn2.microsoft.com/
en-us/library/bb204834.aspx

21

Thread safety
•  Some .NET objects are thread-safe
•  Some aren’t
•  Some .NET objects have some method

that are thread safe and some that aren’t
•  Check the documentation
•  If using on Xbox 360, be careful to

note .NET vs. “Compact .NET”
differences

Info from F. Balena, “Visual C# 2005:
The Base Class Library,” pp. 473-474.

22

Synchronized types
•  Some .NET types that aren’t ordinarily

thread-safe offer thread-safe version
// Create an ArrayList object, and add some values to it!
ArrayList al = new ArrayList();!
al.Add(1); al.Add(2); al.Add(3);!
// Create a synchronized, thread-safe version!
ArrayList syncAl = ArrayList.Synchronized(al);!
// Prove that the new object is thread-safe!
Console.WriteLine(al.IsSynchronized); // => False;!
Console.WriteLine(syncAl.IsSynchronized); // => True;!
// You can share the syncAl object among different !
// threads!
!

From F. Balena, “Visual C# 2005: The Base Class Library,” pp. 477-478.

23

Synchronized types - disadvantages

• Accessing synchronized objects is
slower than accessing the original
nonsynchronized object

• Generally better (in terms of
speed) to use regular types and
synchronize via locks

Info from F. Balena, “Visual C# 2005:
The Base Class Library,” p. 474.

Problems with locks (1)
•  Overhead: acquiring and releasing locks takes time

–  So don’t acquire locks too often

•  Deadlocks: lock acquisition order must be
consistent to avoid these
–  So don’t have very many locks, or only acquire one at a

time
•  Contention: sometimes somebody else has the

lock
–  So never hold locks for too long
–  So have lots of little locks

24

 From B. Dawson, “Lockless Programming in Games,” http://www.gdcvault.com/play/1751/
Lockless_Programming_in_Games

Problems with locks (2)
• Priority inversions: if a thread

is swapped out while holding a
lock, progress may stall
– Changing thread priorities can
lead to this

– Xbox 360 system threads can
briefly cause this

25

 From B. Dawson, “Lockless Programming in Games,” http://www.gdcvault.com/play/1751/
Lockless_Programming_in_Games

Sensible reaction
• Use locks carefully

– Don’t lock too frequently
– Don’t lock for too long
– Don’t use too many locks
– Don’t have one central lock

• Or, try lockless

26

 From B. Dawson, “Lockless Programming in Games,” http://www.gdcvault.com/play/1751/
Lockless_Programming_in_Games

Lockless programming
•  Techniques for safe multi-threaded data sharing

without locks
•  Pros:

–  May have lower overhead
–  Avoids deadlocks
–  May reduce contention
–  Avoids priority inversions

•  Cons
–  Very limited abilities
–  Extremely tricky to get right
–  Generally non-portable

27

28

Polling

•  Main thread checks flag variables set by
the worker threads when they finish

•  Useful if main thread can do some stuff
(e.g., eye-candy animation in a turn-based
strategy game) independently of the worker
threads (e.g. AI), but needs worker threads
to finish before continuing (e.g. making the
computer’s move)

29

Polling example
!
bool done = false;!
while (!done)!
{!
!Thread.Sleep(0);!
!done = true;!
!for int(i = 0; i < m_ThreadDone.Length;!
! ! ! ! ! ! ! ! i++)!
 {!
 done &= m_ThreadDone[i];!
 }!
}!
!

 Code from Joseph Hall,
 “XNA Game Studio

Express,”
 p. 608

 Worker thread i sets
 m_ThreadDone[i]=true before it exits

30

The problem with polling
•  Polling takes up “C# cycles”

•  If your main thread only needs to wait
until its worker threads are done, the
Wait/Pulse approach is better
– Let the .NET runtime handle it!
– Uh… oh, but only on Windows. L

31

True or False?
 “If all you are doing is reading or

writing a shared integer variable,
nothing can go wrong and you
don’t need any lock blocks, since
reads and writes correspond to a
single CPU instruction… right?”

Info from F. Balena, “Visual C# 2005:
The Base Class Library,” p. 472.

32

Beware enregistering
private bool Done = false;!
!
void TheTask();!
{!
 // Exit the loop when another thread has set the Done!
 // flag or when the task being performed is complete.!
 while (this.Done == false)!
 {!
 // Do some stuff!
 if (nothingMoreToDo)!
 { !
 this.Done = true;!
 break;!
 }!
 }!
}!

Enregistering:
compiler caches
variable in a register,
not in L2 or main
memory

From F. Balena, “Visual C# 2005: The
Base Class Library,” p. 472.

33

volatile fields
private volatile bool Done = false;!
!
!

•  volatile tells compiler other threads may be
reading or writing to the variable, so don’t
enregister it

•  Does not ensure operations are carried out
atomically for classes, structs, arrays…

•  Does not ensure atomic read+write for anything
–  Increment, decrement
–  Test & Set

•  “Works” in .NET, but can still be problematic
when doing “real C++ XDK” Xbox 360
programming (we’ll return to this later)

Info from F. Balena, “Visual C# 2005:
The Base Class Library,” p. 474.

34

Interlocked.X (1)
int lockCounter = 0;!
!
// Increment the counter and execute some code if!
// its previous value was zero!
if (Interlocked.Increment(ref lockCounter) == 1)!
{!
 … !
}!
// Decrement the shared counter.!

Interlocked.Decrement(ref lockCounter);

 Can also increment or decrement by an
arbitray amount with a second argument

 Atomic increment and decrement:

From F. Balena, “Visual C# 2005: The
Base Class Library,” p. 485.

35

Interlocked.X (2)

string s1 = “123”;!
string s2 = Interlocked.Exchange(ref s1, “abc”);!
!
!

•  Can assign a value and return its previous
value as an atomic operation:

 After execution, s2 = “123”, s1 = “abc”
•  Variation to the assignment if a and c are

equal (reference equality in the case of
objects):

Interlocked.CompareExchange(ref a, b, c);!

From F. Balena, “Visual C# 2005: The
Base Class Library,” p. 485.

36

Out-of-order read/writes (1)
•  “CPUs employ performance optimizations

that can result in out-of-order execution,
including memory load and store
operations.”

•  “Memory operation reordering normally
goes unnoticed within a single thread of
execution, but causes unpredictable
behaviour in concurrent programs and
device drivers unless carefully controlled.”

http://en.wikipedia.org/wiki/Memory_barrier

37

Out-of-order read/writes (2)

•  “When a program runs on a single
CPU, the hardware performs the
necessary book-keeping to ensure
that programs execute as if all
memory operations were
performed in program order,
hence memory barriers are not
necessary.”

http://en.wikipedia.org/wiki/Memory_barrier

38

Out-of-order read/writes (3)
•  “However, when the memory is shared

with multiple devices, such as other CPUs
in a multiprocessor system, or memory
mapped peripherals, out-of-order access
may affect program behavior.”

•  “For example a second CPU may see
memory changes made by the first CPU in
a sequence which differs from program
order.”

http://en.wikipedia.org/wiki/Memory_barrier

Simple CPU/compiler model

Read pC
Write pA
Write pB
Read pD
Write pC

Read pC Read pD Write pA Write pB Write pC

 From B. Dawson, “Lockless
Programming in Games,” http://
www.gdcvault.com/play/1751/
Lockless_Programming_in_Games

Write pA Write pB Write pC

Alternate CPU model – writes pass writes

Write pA
Write pB
Write pC

Visible order:
Write pA
Write pC
Write pB
 From B. Dawson, “Lockless

Programming in Games,” http://
www.gdcvault.com/play/1751/
Lockless_Programming_in_Games

Alternate CPU – reads pass reads

Read A1
Read A2
Read A1

Visible order:
Read A1
Read A1
Read A2

Read A1 Read A2 Read A1

 From B. Dawson, “Lockless
Programming in Games,” http://
www.gdcvault.com/play/1751/
Lockless_Programming_in_Games

Alternate CPU – writes pass reads

Read A1
Write A2

Visible order:
Write A2
Read A1

Read A1 Write A2

 From B. Dawson, “Lockless
Programming in Games,” http://
www.gdcvault.com/play/1751/
Lockless_Programming_in_Games

Alternate CPU – reads pass writes

Read A1
Write A2
Read A2
Read A1

Visible order:
Read A1
Read A1
Write A2
Read A2

Read A1 Write A2 Read A1 Read A2

 From B. Dawson, “Lockless
Programming in Games,” http://
www.gdcvault.com/play/1751/
Lockless_Programming_in_Games

Memory models

•  “Pass” means “visible before”
•  Memory models are actually more complex than

this
–  May vary for cacheable/non-cacheable, etc.

•  This only affects multi-threaded lock-free code!!!
* Only stores to different addresses can pass each other
** Loads to a previously stored address will load that value

x86/x64 PowerPC ARM IA64

store can pass store? No Yes* Yes* Yes*

load can pass load? No Yes Yes Yes

store can pass load? No Yes Yes Yes

load can pass store?** Yes Yes Yes Yes

 From B. Dawson, “Lockless
Programming in Games,” http://
www.gdcvault.com/play/1751/
Lockless_Programming_in_Games

Improbable CPU – Reads Don’t Pass Writes

Read A1
Write A2
Read A1

Read A1 Write A2 Read A1

 From B. Dawson, “Lockless
Programming in Games,” http://
www.gdcvault.com/play/1751/
Lockless_Programming_in_Games

Reads must pass writes!
•  Reads not passing writes would mean L1

cache is frequently disabled
– Every read that follows a write would stall for

shared storage latency
•  Huge performance impact
•  Therefore, on x86 and x64 (and on all

modern CPUs) reads can pass writes

 From B. Dawson, “Lockless Programming in Games,”
 http://www.gdcvault.com/play/1751/Lockless_Programming_in_Games

47

Memory barriers
• “a class of instructions which

cause a central processing unit
(CPU) to enforce an ordering
constraint on memory
operations issued before and
after the barrier instruction.”

http://en.wikipedia.org/wiki/Memory_barrier

48

PowerPC memory barriers

• Assembly instructions:
– lwsync: lightweight sync (still lets

reads pass writes)
– sync, i.e. hwsync: heavyweight sync

(stops all reordering)
– eieio: “Enforce In-Order Execution

of I/O”
 http://en.wikipedia.org/wiki/Memory_barrier
Further information from an e-mail from Bruce Dawson

MyExportBarrier();
•  Prevents reordering of writes by compiler or CPU

–  Used when allowing access to data

•  x86/x64: _ReadWriteBarrier();
–  Compiler intrinsic, prevents compiler reordering

•  PowerPC: __lwsync();
–  Hardware barrier, prevents CPU write reordering

•  ARM: __dmb(); // Full hardware barrier
•  IA64: __mf(); // Full hardware barrier

•  Positioning is crucial!
–  Write the data, MyExportBarrier, write the control value

•  Export-barrier followed by write is known as write-release
semantics

 From B. Dawson, “Lockless Programming in Games,”
 http://www.gdcvault.com/play/1751/Lockless_Programming_in_Games

MyImportBarrier();
•  Prevents reordering of reads by compiler or CPU

–  Used when gaining access to data

•  x86/x64: _ReadWriteBarrier();
–  Compiler intrinsic, prevents compiler reordering

•  PowerPC: __lwsync(); or isync();
–  Hardware barrier, prevents CPU read reordering

•  ARM: __dmb(); // Full hardware barrier
•  IA64: __mf(); // Full hardware barrier
•  Positioning is crucial!

–  Read the control value, MyImportBarrier, read the data

•  Read followed by import-barrier is known as read-acquire
semantics

 From B. Dawson, “Lockless Programming in Games,”
 http://www.gdcvault.com/play/1751/Lockless_Programming_in_Games

Full memory barrier
•  MemoryBarrier();

– x86: __asm xchg Barrier, eax
– x64: __faststorefence();
– Xbox 360: __sync();
– ARM: __dmb();
–  IA64: __mf();

•  Prevents all reordering – including
preventing reads passing writes

•  Most expensive barrier type
 From B. Dawson, “Lockless Programming in Games,”
 http://www.gdcvault.com/play/1751/Lockless_Programming_in_Games

Reordering implications
•  Publisher/Subscriber model
•  Thread A:

g_data = data;
g_dataReady = true;

•  Thread B:
if(g_dataReady)
 process(g_data);

•  Is it safe?

 From B. Dawson, “Lockless Programming in
Games,” http://www.gdcvault.com/play/
1751/Lockless_Programming_in_Games

Publisher/Subscriber on PowerPC (1)

Proc 1:
Write g_data
Write g_dataReady

Proc 2:
Read g_dataReady
Read g_data

•  Writes may reach L2
out of order

Write
g_data

Write
g_dataReady

 From B. Dawson, “Lockless
Programming in Games,” http://
www.gdcvault.com/play/1751/
Lockless_Programming_in_Games

Publisher/Subscriber on PowerPC (2)

Proc 1:
Write g_data
MyExportBarrier();
Write g_dataReady

Proc 2:
Read g_dataReady
Read g_data

•  Writes now reach L2
in order

Write
g_data

Export Barrier Write
g_dataReady

 From B. Dawson, “Lockless
Programming in Games,”
 http://www.gdcvault.com/play/1751/
Lockless_Programming_in_Games

Publisher/Subscriber on PowerPC (3)

Proc 1:
Write g_data
MyExportBarrier();
Write g_dataReady

Proc 2:
Read g_dataReady
Read g_data

•  Reads may leave L2
out of order – g_data
may be stale

Write
g_data

Export Barrier Write
g_dataReady

Read
g_data
Read

g_dataReady

Invalidate
g_data

 From B. Dawson, “Lockless
Programming in Games,”
 http://www.gdcvault.com/play/1751/
Lockless_Programming_in_Games

Publisher/Subscriber on PowerPC (4)

Proc 1:
Write g_data
MyExportBarrier();
Write g_dataReady

Proc 2:
Read g_dataReady
MyImportBarrier();
Read g_data

•  It's all good!

Write
g_data

Export Barrier Write
g_dataReady

Read
g_dataReady

Invalidate
g_data

Read
g_data Import Barrier

 From B. Dawson, “Lockless
Programming in Games,”
 http://www.gdcvault.com/play/1751/
Lockless_Programming_in_Games

x86/x64 FTW!!!
•  Not so fast…
•  Compilers can be just as evil as

processors
•  Compilers will rearrange your code as

much as legally possible
– And compilers assume your code is

single threaded
•  Compiler and CPU reordering barriers

needed
 From B. Dawson, “Lockless Programming in Games,”
 http://www.gdcvault.com/play/1751/Lockless_Programming_in_Games

Barrier summary
•  MyExportBarrier when publishing

data, to prevent write reordering
•  MyImportBarrier when acquiring data,

to prevent read reordering
•  MemoryBarrier to stop all reordering,

including reads passing writes
•  Identify where you are publishing/

releasing and where you are
subscribing/acquiring

 From B. Dawson, “Lockless Programming in Games,”
 http://www.gdcvault.com/play/1751/Lockless_Programming_in_Games

What about “volatile” in C++?
•  Standard volatile semantics not designed for

multi-threading
–  Compiler can move normal reads/writes past volatile

reads/writes
–  Also, doesn’t prevent CPU reordering

•  VC++ 2005+ volatile is better…
–  Acts as read-acquire/write-release on x86/x64 and

Itanium
–  Doesn’t prevent hardware reordering on Xbox 360

•  Watch for atomic<T> in C++0x
–  Sequentially consistent by default but can choose from

four memory models
 From B. Dawson, “Lockless Programming in Games,”
 http://www.gdcvault.com/play/1751/Lockless_Programming_in_Games

Interlocked.X in C++
•  Interlocked.X is a full barrier on

Windows for x86, x64, and
Itanium

• Not a barrier at all on Xbox 360
– Oops. Still atomic, just not a barrier

 From B. Dawson, “Lockless Programming in Games,”
 http://www.gdcvault.com/play/1751/Lockless_Programming_in_Games

61

Problems with C++ on Xbox 360
• Interlocked.X & volatile-type

operations are very fast
•  Safe on Windows (because of Intel

memory model)
•  When doing “real X++ XDK” Xbox 360

development, Interlocked.X and
volatile keyword will prevent compiler
from reordering reads and writes, but not
the CPU!

 Info from B. Dawson, “Lockless Programming
Considerations for Xbox 360 and Microsoft
Windows,” msdn2.microsoft.com/en-us/library/
bb310595.aspx

62

Danger of the Xbox 360 CPU

• Can still do native lockless
programming in on the Xbox 360,
but you have to really know what
you’re doing

 Info from B. Dawson, “Lockless Programming
Considerations for Xbox 360 and Microsoft
Windows,” msdn2.microsoft.com/en-us/library/
bb310595.aspx

63

Playing it safe

• Locks and Mutexes provide
needed memory barriers

• Makes them easier to use
than lockless programming

64

C#: MemoryBarrier()
•  “Synchronizes memory access as

follows: The processor executing the
current thread cannot reorder
instructions in such a way that
memory accesses prior to the call to
MemoryBarrier execute after memory
accesses that follow the call to
MemoryBarrier.”

http://msdn.microsoft.com/en-us/library/system.threading.thread.memorybarrier.aspx

65

Notes on MemoryBarrier()

•  “MemoryBarrier is required only on
multiprocessor systems with weak memory
ordering (for example, a system employing
multiple Intel Itanium processors).”

•  “For most purposes, the C# lock
statement…the Monitor class provide
easier ways to synchronize data.”

http://msdn.microsoft.com/en-us/library/system.threading.thread.memorybarrier.aspx

66

Compact Framework to the rescue? (1)

 Creator’s Club community forum post, “Lightweight locking on the 360”
 http://forums.xna.com/forums/t/3252.aspx

•  “Now, we have access to a fair few
Interlocked.xxx methods in the framework, which
would do fine if I were programming on Windows,
however on the 360 I need to be sure that I am
not going to be caught out by write-reordering by
the CLR or CPU. (i.e the reading thread spins
until Interlocked.xxx sees a flag change, but the
writing thread's CPU hasn't finished writing out its
data to its cache, causing the reading thread to
see old data).”
- CosmicFlux, 7/9/2007

67

Compact Framework to the rescue? (2)

 “From the CF guys who implemented these methods:
The Interlocked functions in NETCF provide a memory
barrier on both sides of the interlocked operation. (This is
different than native Xbox360 programming.) In addition,
we provide the Thread.MemoryBarrier api if the customer
needs to place an explicit memory barrier. Also, the
Monitor functions are generally a higher performance
operation than using a Mutex unless there are many
many collisions on the lock. They were quite impressed
that someone actually understood the issues involved :-)”

 - Shawn Hargreaves, 7/10/2007

 Creator’s Club community forum post, “Lightweight locking on the 360”
 http://forums.xna.com/forums/t/3252.aspx

68

Partial memory barriers in C#

•  Don’t have to declare a variable volatile
•  Instead, you can use
!value = !
!Thread.VolatileRead(ref sharedvalue);!
!Thread.VolatileWrite(ref sharedvalue,!
! ! ! ! ! ! value);!

 as needed

Info from F. Balena, “Visual C# 2005:
The Base Class Library,” p. 474.

• volatile variables conduct implicit
VolatileRead and VolatileWrite

69

Setting thread priority in C#

•  Be careful about boosting thread priority
–  If the priority is too high, you could cause the

system to hang and become unresponsive
–  If the priority is too low, the thread may starve

t.Priority = ThreadPriority.Normal;

Highest, AboveNormal, BelowNormal, Lowest

•  Defaults to normal
•  OS may ignore you

or

Final bullet from Bruce Dawson & Chuck Walbourn, Microsoft Game
Technology Group, “Coding for Multiple Cores,” PowerPoint presentation

70

Locating your threads on the Xbox 360

•  Set thread affinity within the worker
thread immediately after starting it
– Don’t forget to call it, or your worker thread

will be running on the same hardware
thread as your main thread

•  Only available on Xbox 360 XNA

!

Thread.CurrentThread.SetProcessorAffinity!
 !(new int[] {index});!
!

71

Check to see if you’re on an Xbox 360
!

!
#if XBOX360!
 Thread.CurrentThread.SetProcessorAffinity!
 ! (new int[] {index});!
#endif!
!

•  No way I know of in C# to manually set
processor affinity in Windows like on the
Xbox 360

•  Windows decides what threads run where

72

Xbox 360 hardware threads
Ind CPU Thr Comment!
0 1 1 Not available in XNA!
1 1 2 Available; main thread;!
! ! game runs here by default!

2 2 1 Not available in XNA!
3 2 2 Available; parts of the !
! ! ! Guide and Dashboard live here!

4 3 1 Available; Xbox Live !
! ! ! Marketplace downloads!

5 3 2 Available; parts of the !
! ! ! Guide and Dashboard live here!

!
!

 Table from Joseph Hall, “XNA Game
Studio Express,” p. 608

73

Xbox 360 specific notes (1)
•  “If a program holds a lock for too long—because

of poor design or because the thread has been
swapped out by a higher priority thread—then
other threads may be blocked for a long time.”

•  “This risk is particularly great on Xbox 360,
because the software threads are assigned a
hardware thread by the developer, and the
operating system won't move them to another
hardware thread, even if one is idle.”

 Info from B. Dawson, “Lockless Programming
Considerations for Xbox 360 and Microsoft
Windows,” msdn2.microsoft.com/en-us/library/
bb310595.aspx

74

Xbox 360 specific notes (2)
•  The Xbox 360 also has no

protection against priority
inversion, where a high-priority
thread spins in a loop while
waiting for a low-priority thread to
release a lock

 Info from B. Dawson, “Lockless Programming Considerations for Xbox 360 and Microsoft
Windows,” msdn2.microsoft.com/en-us/library/bb310595.aspx

75

Advice

 Advice from Joseph Hall, “XNA Game
Studio Express,” p. 610

•  More than one thread per core isn’t bad…
•  …but more than one processor-intensive

task per core is!
•  Put most intensive tasks on separate

cores, and some less-demanding tasks on
those same cores (threads that work in
short bursts, disk I/O, etc.)

76

More advice
•  Limit number of synchronization points
•  Don’t lock resources longer than necessary
•  Avoid sharing data when possible
•  Profile your code before and after to make sure

you’re getting the performance benefits you
expect
–  Very easy to write multithreaded code that performs

worse than single threaded!

 Advice from Joseph Hall, “XNA Game
Studio Express,” p. 611

